
HPSS
Programmer's
Reference Guide,
Volume 1

High Performance Storage System
Release 4.2

December 2000

-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 1992-2000 International Business Machines Corporation, The Regents of the University of California,

Sandia Corporation, Lockheed Martin Energy Research Corporation, and NASA Langeley Research

Center.

All rights reserved.

Portions of this work were produced by the University of California,Lawrence Livermore National

Laboratory (LLNL) under Contract No. W-7405-ENG-48 with the U.S. Department of Energy (DOE), by

the University of California, Lawrence Berkeley National Laboratory (LBNL) under Contract No.

DEAC03776SF00098 with DOE, by the University of California, Los Alamos National Laboratory (LANL)

under Contract No. W-7405-ENG-36 with DOE, by Sandia Corporation, Sandia National Laboratories

(SNL) under Contract No. DEAC0494AL85000 with DOE, and Lockheed Martin Energy Research

Corporation, Oak Ridge National Laboratory (ORNL) under Contract No. DE-AC05-96OR22464 with

DOE. The U.S. Government has certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER

Portions of this software were sponsored by an agency of the United States Government. Neither the

United States, DOE, The Regents of the University of California, Sandia Corporation, Lockheed Martin

Energy Research Corporation, nor any of their employees, makes any warranty, express or implied, or

assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

rights.

Printed in the United States of America.

HPSS Release 4.2

December 2000

High Performance Storage System is a registered trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

AIX and RISC/6000 are trademarks of International Business Machines Corporation.

Encina is a registered trademark of Transarc Corporation.

UNIX is a registered trademark of Unix System Laboratories, Inc.

Sammi is a trademark of Scientific Software Intercomp.

NFS and Network File System are trademarks of Sun Microsystems, Inc.

DST is a trademark of Ampex Systems Corporation.

ACLS is a trademark of Storage Technology Corporation.

Other brands and product names appearing herein may be trademarks or registered trademarks of third parties.

HPSS Programmer’s Reference, Vol. 1 December 2000 -3
Release 4.2, Revision 1

Table of Contents

Preface .. 9>

Chapter 1. Overview.. 1-1

1.1. Client API ... 1-1

1.1.1. Purpose ... 1-1

1.1.2. Components ... 1-1

1.1.3. Constraints.. 1-3

1.1.4. Libraries .. 1-3

1.1.5. Environment Variables ... 1-3

1.2. Supplemental Data Transfer Functions ... 1-5

1.2.1. Purpose ... 1-5

1.2.2. Components ... 1-6

1.2.2.1. IPI-3 Data Transfer .. 1-6

1.2.2.2. Mover Socket (Parallel TCP/IP Data Transfer)... 1-6

1.2.2.3. Mover Protocol... 1-6

1.2.2.4. Parallel Data Transfer ... 1-6

1.2.2.5. Network Options ... 1-6

1.2.3. Constraints.. 1-6

1.2.4. Libraries .. 1-7

1.3. Non-DCE Client API... 1-7

1.3.1. Purpose ... 1-7

1.3.2. Components ... 1-7

1.3.3. Constraints.. 1-7

1.3.4. Libraries .. 1-7

1.3.5. Environment Variables ... 1-8

1.4. 64-bit Arithmetic Library ... 1-8

1.4.1. Purpose ... 1-8

1.4.2. Components ... 1-9

1.4.3. Constraints.. 1-10

1.4.4. Libraries .. 1-10

1.5. MPI-IO API .. 1-10

1.5.1. Purpose ... 1-10

1.5.2. Components ... 1-11

1.5.3. Constraints.. 1-12

1.5.4. Libraries .. 1-12

1.5.5. Environment Variables ... 1-13

1.6. Storage Concepts ... 1-14

1.6.1. Class of Service .. 1-14

1.6.2. Storage Class .. 1-14

1.6.3. Storage Hierarchy.. 1-15

1.6.4. File Family .. 1-15

1.7. User IDs .. 1-15

1.8. Access Control List API.. 1-16

1.8.1. Purpose ... 1-16

1.8.2. Components ... 1-17

1.8.3. Constraints.. 1-17

1.8.4. Libraries .. 1-17

1.9. DCE User Accounts .. 1-18

-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions.. 2-1

2.1. API Interfaces... 2-1

2.1.1. hpss_Access.. 2-3

2.1.2. hpss_AcctCodeToName ... 2-4

2.1.3. hpss_AcctNameToCode ... 2-5

2.1.4. hpss_Chacct.. 2-6

2.1.5. hpss_ChacctByName .. 2-7

2.1.6. hpss_Chdir ... 2-9

2.1.7. hpss_Chmod .. 2-10

2.1.8. hpss_Chown... 2-11

2.1.9. hpss_Chroot ... 2-13

2.1.10. hpss_ClientAPIReset... 2-15

2.1.11. hpss_Close .. 2-16

2.1.12. hpss_Closedir... 2-17

2.1.13. hpss_ConvertIdsToNames... 2-18

2.1.14. hpss_ConvertNamesToIds... 2-20

2.1.15. hpss_Create .. 2-22

2.1.16. hpss_DeleteACL .. 2-24

2.1.17. hpss_Fclear ... 2-26

2.1.18. hpss_FclearOffset ... 2-27

2.1.19. hpss_FileGetAttributes .. 2-28

2.1.20. hpss_FileGetXAttributes .. 2-29

2.1.21. hpss_FileSetAttributes .. 2-31

2.1.22. hpss_FilesetCreate... 2-34

2.1.23. hpss_FilesetDelete ... 2-36

2.1.24. hpss_FilesetGetAttributes .. 2-37

2.1.25. hpss_FilesetListAll .. 2-39

2.1.26. hpss_FilesetSetAttributes ... 2-41

2.1.27. hpss_Fpreallocate .. 2-43

2.1.28. hpss_Fstat ... 2-44

2.1.29. hpss_Ftruncate ... 2-45

2.1.30. hpss_GetAcct.. 2-46

2.1.31. hpss_GetAcctName... 2-47

2.1.32. hpss_GetACL ... 2-48

2.1.33. hpss_GetBFSStats .. 2-50

2.1.34. hpss_GetConfiguration... 2-51

2.1.35. hpss_Getcwd.. 2-52

2.1.36. hpss_GetListAttrs .. 2-53

2.1.37. hpss_JunctionCreate ... 2-54

2.1.38. hpss_JunctionDelete.. 2-56

2.1.39. hpss_Link.. 2-57

2.1.40. hpss_LoadThreadState ... 2-59

2.1.41. hpss_LoadDefaultThreadState .. 2-60

2.1.42. hpss_Lseek.. 2-61

2.1.43. hpss_Lstat ... 2-63

2.1.44. hpss_Migrate.. 2-65

2.1.45. hpss_Mkdir... 2-67

2.1.46. hpss_Open .. 2-69

2.1.47. hpss_OpenBitfile.. 2-72

2.1.48. hpss_Opendir... 2-74

2.1.49. hpss_Purge ... 2-76

2.1.50. hpss_PurgeLock... 2-78

2.1.51. hpss_PurgeLoginContext ... 2-79

HPSS Programmer’s Reference, Vol. 1 December 2000 -5
Release 4.2, Revision 1

2.1.52. hpss_Read... 2-80

2.1.53. hpss_ReadAttrs.. 2-82

2.1.54. hpss_Readdir.. 2-84

2.1.55. hpss_Readlink.. 2-85

2.1.56. hpss_ReadList .. 2-87

2.1.57. hpss_Rename ... 2-89

2.1.58. hpss_ReopenBitfile .. 2-91

2.1.59. hpss_Rewinddir... 2-93

2.1.60. hpss_Rmdir .. 2-94

2.1.61. hpss_SetACL .. 2-95

2.1.62. hpss_SetAcct... 2-97

2.1.63. hpss_SetAcctByName ... 2-98

2.1.64. hpss_SetBFSStats ... 2-100

2.1.65. hpss_SetConfiguration ... 2-101

2.1.66. hpss_SetCOSByHints .. 2-102

2.1.67. hpss_SetFileOffset ... 2-104

2.1.68. hpss_SetLoginContext .. 2-106

2.1.69. hpss_SiteIdToName .. 2-107

2.1.70. hpss_SiteNameToId .. 2-108

2.1.71. hpss_Stage .. 2-109

2.1.72. hpss_StageCallBack... 2-111

2.1.73. hpss_Stat ... 2-113

2.1.74. hpss_Statfs .. 2-115

2.1.75. hpss_Statvfs.. 2-116

2.1.76. hpss_Symlink ... 2-117

2.1.77. hpss_ThreadCleanUp ... 2-118

2.1.78. hpss_Truncate .. 2-119

2.1.79. hpss_Umask ... 2-120

2.1.80. hpss_Unlink ... 2-121

2.1.81. hpss_UpdateACL .. 2-123

2.1.82. hpss_Utime... 2-125

2.1.83. hpss_Write.. 2-127

2.1.84. hpss_WriteList ... 2-129

2.1.85. hpss_XLoadThreadState... 2-131

2.1.86. free_ior_mem ... 2-133

2.2. Non-DCE Client API Specific Interfaces.. 2-133

2.2.1. hpss_PVRetrievals... 2-135

2.3. Data Definitions... 2-135

2.3.1. File Creation Hint Structure - hpss_cos_hints_t ... 2-137

2.3.2. Class of Service Priorities - hpss_cos_priorities_t... 2-139

2.3.3. Class of Service Metadata Structure - hpss_cos_md_t... 2-141

2.3.4. File Attribute Structure - hpss_fileattr_t .. 2-144

2.3.5. Extended File Attribute Structure - hpss_xfileattr_t .. 2-145

2.3.6. Name Server Attribute Structure - ns_Attrs_t .. 2-146

2.3.7. Name Server Fileset Attributes Structure – ns_FilesetAttrs_t 2-150

2.3.8. Name Server Object Handle Structure - ns_ObjHandle_t... 2-152

2.3.9. Name Server Directory Entry - ns_DirEntry_t.. 2-154

2.3.10. Bitfile Volatile and Metadata Attributes - bf_attrib_t .. 2-155

2.3.11. Bitfile Volatile and Metadata Extended Attributes - bf_xattrib_t 2-156

2.3.12. Bitfile Metadata Attributes - bf_attrib_md_t ... 2-157

2.3.13. Bitfile Owner Record - bfs_owner_rec_t .. 2-160

2.3.14. Bitfile Server Storage Class Attributes - bf_sc_attrib_t .. 2-161

2.3.15. Bitfile Server Virtual Volume Attributes - bf_vv_attrib_t 2-162

2.3.16. Storage Server Physical Volume Attributes - pv_list_element_t............................ 2-163

-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.17. Storage Server Physical Volume Attributes Conformant Array - pv_list_t.......... 2-164

2.3.18. Bitfile Server Statistics - bfs_stats_t... 2-165

2.3.19. Account Record - acct_rec_t... 2-166

2.3.20. API Configuration Structure – api_config_t.. 2-167

2.3.21. Name Server ACL Conformant Array - ns_ACLConfArray_t 2-170

2.3.22. Name Server Access Control List Entry - ns_ACLEntry_t...................................... 2-171

2.3.23. Global Fileset Entry Structure – hpss_global_fsent_t... 2-172

2.3.24. Name Server Fileset Attribute Bits – ns_FilesetAttrBits_t 2-173

2.3.25. Name Server Object Attribute Bits – ns_FilesetAttrBits_t 2-174

2.3.26. Purge Lock Flag - purgelock_flag_t .. 2-175

2.3.27. API Name Specification – api_namespec_t ... 2-176

2.3.28. Bitfile Callback Address – bfs_callback_addr_t.. 2-177

2.3.29. HPSS Directory Entry – hpss_dirent_t ... 2-178

2.3.30. HPSS Security User Credentials – hsec_UserCred_t.. 2-179

2.3.31. Security Password Entry – SecPWent_t ... 2-180

Chapter 3. I/O Descriptor (IOD) and I/O Reply (IOR) ... 3-1

3.1. I/O Descriptor Purpose.. 3-1

3.2. I/O Reply Purpose.. 3-1

3.3. I/O Descriptor Components ... 3-1

3.4. I/O Reply Components.. 3-2

3.5. Data Definitions... 3-3

3.5.1. I/O Descriptor (IOD) - IOD_t.. 3-3

3.5.2. Source/Sink Descriptor - srcsinkdesc_t ... 3-6

3.5.3. Address Structure - address_t ... 3-8

3.5.4. I/O Reply (IOR) - IOR_t ... 3-17

3.5.5. Source/Sink Reply - srcsinkreply_t .. 3-21

Chapter 4. Supplemental Data Transfer Functions ... 4-1

4.1. API Functions .. 4-1

4.1.1. IPI-3 Data Transfer Library Functions.. 4-2

4.1.1.1. ipi3_data3_open... 4-2

4.1.1.2. ipi3_data3_close ... 4-3

4.1.1.3. ipi3_data3_read.. 4-4

4.1.1.4. ipi3_data3_write .. 4-6

4.1.1.5. ipi3_data3_complete ... 4-8

4.1.1.6. ipi3_data3_cancel... 4-9

4.1.2. IPI-3 Data Transfer Library Data Definitions .. 4-10

4.1.2.1. IPI-3 Interface Address Structure - IPI3_INTERFACE_STRUCT 4-10

4.1.3. Mover Socket (Parallel TCP/IP Data Transfer) Functions .. 4-11

4.1.3.1. mover_socket_send_buffer .. 4-11

4.1.3.2. mover_socket_send_buffer_timeout... 4-13

4.1.3.3. mover_socket_send_buffer_timeout_size.. 4-15

4.1.3.4. mover_socket_get_buffer ... 4-17

4.1.3.5. mover_socket_get_buffer_timeout.. 4-19

4.1.3.6. mover_socket_recv_data .. 4-21

4.1.3.7. mover_socket_recv_data_timeout .. 4-23

4.1.3.8. mover_socket_send_requested_data .. 4-25

HPSS Programmer’s Reference, Vol. 1 December 2000 -7
Release 4.2, Revision 1

4.1.3.9. mover_socket_send_requested_data_timeout .. 4-27

4.1.3.10. mover_socket_send_requested_data_timeout_size 4-29

4.1.3.11. mover_waitfor_data .. 4-31

4.1.3.12. mover_waitfor_data_timeout .. 4-33

4.1.3.13. mover_waitfor_requests ... 4-35

4.1.3.14. mover_waitfor_requests_timeout ... 4-37

4.1.4. Mover Protocol APIs... 4-39

4.1.4.1. mvrprot_recv_initmsg .. 4-39

4.1.4.2. mvrprot_send_initmsg.. 4-40

4.1.4.3. mvrprot_recv_ipaddr.. 4-41

4.1.4.4. mvrprot_send_ipaddr... 4-42

4.1.4.5. mvrprot_recv_ipi3addr... 4-43

4.1.4.6. mvrprot_send_ipi3addr.. 4-44

4.1.4.7. mvrprot_recv_shmaddr.. 4-45

4.1.4.8. mvrprot_send_shmaddr... 4-46

4.1.4.9. mvrprot_recv_compmsg .. 4-47

4.1.4.10. mvrprot_send_compmsg.. 4-48

4.1.5. Mover Protocol Data Structures .. 4-49

4.1.5.1. Mover Protocol Initiator Message Structure - initiator_msg_t 4-49

4.1.5.2. Mover Protocol Completion Msg Structure - completion_msg_t 4-51

4.1.5.3. Mover Protocol TCP/IP Address Structure - initiator_ipaddr_t................ 4-52

4.1.5.4. Mover Protocol IPI-3 Address Structure - initiator_ipi3addr_t.................. 4-53

4.1.5.5. Mover Protocol Shm Address Structure - initiator_shmaddr_t.................. 4-54

4.1.6. Parallel Data Transfer Functions... 4-55

4.1.6.1. pdata_recv_hdr .. 4-55

4.1.6.2. pdata_recv_hdr_timeout .. 4-56

4.1.6.3. pdata_send_hdr ... 4-57

4.1.6.4. pdata_send_hdr_timeout ... 4-58

4.1.6.5. pdata_send_hdr_and_data... 4-59

4.1.6.6. pdata_send_hdr_and_data_timeout... 4-60

4.1.6.7. pdata_send_hdr_and_data_timeout_size .. 4-62

4.1.7. Parallel Data Transfer Data Definitions ... 4-64

4.1.7.1. Parallel Data Transfer Header - pdata_hdr_t .. 4-64

4.1.8. Network Options Functions .. 4-65

4.1.8.1. netopt_FindEntry... 4-65

4.1.8.2. netopt_GetWriteSize ... 4-66

4.1.9. Network Options Data Definitions... 4-67

4.1.9.1. Network Options Entry - netopt_entry_t... 4-67

Chapter 5. Math Library .. 5-1

5.1. API Interfaces... 5-1

5.1.1. add64m.. 5-2

5.1.2. add64_3m.. 5-3

5.1.3. and64m.. 5-4

5.1.4. bld64m... 5-5

5.1.5. cast64m.. 5-6

5.1.6. div64m... 5-7

-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.7. div2x64m .. 5-8

5.1.8. div_cl64m.. 5-9

5.1.9. div_2xcl64m.. 5-10

5.1.10. eqz64m .. 5-11

5.1.11. eq64m .. 5-12

5.1.12. ge64m .. 5-13

5.1.13. gt64m... 5-14

5.1.14. high32m .. 5-15

5.1.15. le64m ... 5-16

5.1.16. low32m.. 5-17

5.1.17. lt64m.. 5-18

5.1.18. mod64m .. 5-19

5.1.19. mod2x64m .. 5-20

5.1.20. mul64m ... 5-21

5.1.21. neqz64m.. 5-22

5.1.22. not64m... 5-23

5.1.23. or64m... 5-24

5.1.24. shl64m ... 5-25

5.1.25. shr64m... 5-26

5.1.26. sub64m .. 5-27

5.1.27. sub64_3m .. 5-28

5.2. Data Definitions... 5-29

5.2.1. u_signed64.. 5-29

5.2.2. unsigned32 ... 5-29

Chapter 6. MPI-IO API Functions .. 6-1

6.1. Application Programming Interfaces... 6-1

6.1.1. File Manipulation .. 6-3

6.1.1.1. MPI_File_open ... 6-5

6.1.1.2. MPI_File_close ... 6-8

6.1.1.3. MPI_File_delete ... 6-9

6.1.1.4. MPI_File_set_size .. 6-11

6.1.1.5. MPI_File_preallocate... 6-13

6.1.1.6. MPI_File_get_size.. 6-15

6.1.1.7. MPI_File_get_group.. 6-16

6.1.1.8. MPI_File_get_amode... 6-17

6.1.1.9. MPI_File_set_info .. 6-18

6.1.1.10. MPI_File_get_info.. 6-19

6.1.1.11. MPI_File_set_view... 6-20

6.1.1.12. MPI_File_get_view .. 6-22

6.1.2. File Access... 6-24

6.1.2.1. MPI_File_read_at... 6-26

6.1.2.2. MPI_File_read_at_all... 6-28

6.1.2.3. MPI_File_write_at.. 6-30

6.1.2.4. MPI_File_write_at_all ... 6-32

6.1.2.5. MPI_File_iread_at.. 6-34

6.1.2.6. MPI_File_iwrite_at .. 6-36

6.1.2.7. MPI_File_read .. 6-38

6.1.2.8. MPI_File_read_all .. 6-40

HPSS Programmer’s Reference, Vol. 1 December 2000 -9
Release 4.2, Revision 1

6.1.2.9. MPI_File_write... 6-42

6.1.2.10. MPI_File_write_all .. 6-44

6.1.2.11. MPI_File_iread ... 6-46

6.1.2.12. MPI_File_iwrite.. 6-48

6.1.2.13. MPI_File_seek .. 6-50

6.1.2.14. MPI_File_get_position .. 6-52

6.1.2.15. MPI_File_get_byte_offset ... 6-53

6.1.2.16. MPI_File_read_shared .. 6-54

6.1.2.17. MPI_File_write_shared... 6-56

6.1.2.18. MPI_File_iread_shared ... 6-58

6.1.2.19. MPI_File_iwrite_shared.. 6-60

6.1.2.20. MPI_File_read_ordered .. 6-62

6.1.2.21. MPI_File_write_ordered... 6-64

6.1.2.22. MPI_File_seek_shared .. 6-66

6.1.2.23. MPI_File_get_position_shared .. 6-68

6.1.2.24. MPI_File_read_at_all_begin... 6-69

6.1.2.25. MPI_File_read_at_all_end.. 6-71

6.1.2.26. MPI_File_write_at_all_begin ... 6-72

6.1.2.27. MPI_File_write_at_all_end... 6-74

6.1.2.28. MPI_File_read_all_begin .. 6-76

6.1.2.29. MPI_File_read_all_end ... 6-78

6.1.2.30. MPI_File_write_all_begin... 6-79

6.1.2.31. MPI_File_write_all_end.. 6-81

6.1.2.32. MPI_File_read_ordered_begin .. 6-83

6.1.2.33. MPI_File_read_ordered_end ... 6-85

6.1.2.34. MPI_File_write_ordered_begin... 6-86

6.1.2.35. MPI_File_write_ordered_end .. 6-88

6.1.3. File Interoperability... 6-90

6.1.3.1. MPI_File_get_type_extent .. 6-92

6.1.3.2. MPI_Register_datarep .. 6-93

6.1.4. File Consistency ... 6-95

6.1.4.1. MPI_File_set_atomicity... 6-96

6.1.4.2. MPI_File_get_atomicity .. 6-97

6.1.4.3. MPI_File_sync .. 6-98

6.1.5. Error Handling... 6-99

6.1.5.1. MPI_File_create_errhandler... 6-102

6.1.5.2. MPI_File_set_errhandler .. 6-103

6.1.5.3. MPI_File_get_errhandler.. 6-104

6.1.5.4. MPI_File_call_errhandler ... 6-105

6.1.6. File Hints... 6-106

6.1.6.1. MPI_Info_create... 6-108

6.1.6.2. MPI_Info_set .. 6-109

6.1.6.3. MPI_Info_delete... 6-110

6.1.6.4. MPI_Info_get .. 6-111

6.1.6.5. MPI_Info_get_valuelen... 6-112

6.1.6.6. MPI_Info_get_nkeys.. 6-113

6.1.6.7. MPI_Info_get_nthkey.. 6-114

-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.8. MPI_Info_dup .. 6-115

6.1.6.9. MPI_Info_free... 6-116

6.2. C++ Language Bindings... 6-117

6.3. Fortran Language Bindings ... 6-125

6.4. Data Definitions.. 6-131

6.4.1. MPI-IO Standard Data Definitions ... 6-131

6.4.1.1. MPI_Offset.. 6-132

6.5. Troubleshooting .. 6-133

6.5.1. Compilation issues .. 6-133

6.5.2. Load/Link issues... 6-134

6.5.3. Run-time errors.. 6-134

6.5.4. Thread-safety issues.. 6-134

6.5.5. Performance issues.. 6-135

6.5.6. Caching issues.. 6-136

Chapter 7. Site Interfaces ... 139

7.1. Gatekeeping ... 139

7.1.1. gk_site_Close.. 140

7.1.2. gk_site_Create.. 142

7.1.3. gk_site_CreateComplete... 146

7.1.4. gk_site_CreateStats ... 147

7.1.5. gk_site_GetMonitorTypes.. 149

7.1.6. gk_site_Init ... 151

7.1.7. gk_site_Open.. 153

7.1.8. gk_site_OpenStats ... 155

7.1.9. gk_site_PassThru... 156

7.1.10. gk_site_ReadSitePolicy ... 158

7.1.11. gk_site_Shutdown... 160

7.1.12. gk_site_Stage.. 161

7.1.13. gk_site_StageComplete... 163

7.1.14. gk_site_StageStats ... 164

7.2. Account Validation Site Interface ... 165

7.2.1. av_site_AcctIdxToName .. 166

7.2.2. av_site_AcctNameToIdx .. 169

7.2.3. av_site_Initialize .. 172

7.2.4. av_site_Shutdown ... 173

7.2.5. av_site_ValidateAccount.. 174

7.2.6. av_site_ValidateChacct... 177

7.2.7. av_site_ValidateChown.. 180

7.2.8. av_site_ValidateCreate ... 183

Chapter 8. Access Control List API Functions... 187

8.1. API Interfaces... 187

8.1.1. hacl_ConvertACLToHACL.. 187

8.1.2. hacl_ConvertHACLToACL.. 188

8.1.3. hacl_ConvertHACLToString ... 189

8.1.4. hacl_ConvertHACLPermsToPerms.. 190

8.1.5. hacl_ConvertHACLTypeToType.. 191

8.1.6. hacl_ConvertPermsToHACLPerms.. 192

8.1.7. hacl_ConvertStringsToHACL.. 193

HPSS Programmer’s Reference, Vol. 1 December 2000 -11
Release 4.2, Revision 1

8.1.8. hacl_ConvertTypeToHACLType.. 195

8.1.9. hacl_DeleteHACL.. 196

8.1.10. hacl_GetHACL... 198

8.1.11. hacl_SetHACL.. 199

8.1.12. hacl_SortHACL.. 200

8.1.13. hacl_UpdateHACL.. 201

8.2. Data Definitions... 203

8.2.1. HACL-style Access Control List - hacl_acl_t... 203

8.2.2. HACL-style Access Control List Entry - hacl_acl_entry_t .. 204

Appendix A - Programming Examples.. A-1

Appendix B - Makefile Example... B-1

Appendix C - Notes.. C-1

Appendix D - Acronyms.. D-1

Appendix E - References ... 3

Appendix F - MPI-IO Programming Examples ... 5

-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

HPSS Programmer’s Reference, Vol. 1 December 2000 -9
Release 4.2, Revision 1

Preface

This High Performance Storage System (HPSS) Programmer's Reference Guide, Volume 1, Release 4.2, documents

client function calls which are provided by HPSS. It is designed for application programmers.

The document provides the programming reference for HPSS Release 4.2. In particular, the HPSS Client

Application Programming Interfaces (APIs), 64-bit arithmetic library calls, Message Passing Interface -

Input / Output (MPI-IO) interfaces, Site Interfaces, and ACL Interfaces are described. The 64-bit arith-

metic library APIs are included since some Client APIs require 64-bit unsigned integer fields.

The objective of this document is to meet the following general goals:

• Define any known limitations of the APIs.

• Define the application programming interfaces (APIs) provided for use by other subsystems or clients.

• Define the data definitions referenced by the APIs.

Refer to the HPSS User's Guide for a description of the following command line interfaces: standard FTP,

parallel FTP, NFS, IBM SP Parallel I/O File System Import / Export, DFS, and user utilities.

Refer to the HPSS Error Messages Manual for a list of all HPSS error and advisory messages which are out-

put by the HPSS software. For each message, the following information is provided: message identifier

and text, source file name(s) which generate the message, problem description, system action, and admin-

istrator action.

Refer to the HPSS Installation Guide and HPSS Management Guide for descriptions of the interfaces pro-

vided to HPSS administrators.

Refer to the HPSS Programmer's Reference, Volume 2 for a description of application programming interfaces

to the core HPSS servers. While it is envisioned that most users will access HPSS through the Client API,

standard File Transfer Protocol (FTP), parallel FTP (PFTP), Network File System Version 2 (NFS V2), or

DFS, well-defined programming interfaces are provided for each HPSS server. It should be noted that pro-

gramming to the individual server level is a more complex programming model which requires a greater

understanding of the HPSS servers. Volume 2 is appropriate for application / system's programmers with

special needs (e.g. replacing the System's Management interface, adding a new Physical Volume Reposi-

tory, etc.).

The HPSS Programmer's Reference Guide, Volume 1 is structured as follows:

Chapter 1: Overview This chapter provides an overview of

each type of programmer interface,

contraints, and required libraries.

Chapter 2: Client API This chapter defines the Client API speci-

fications and associated data definitions.

Chapter 3: I/O Descriptor (IOD) and I/O Reply (IOR) This chapter describes the I/O Descriptor

(IOD) and I/O Reply (IOR) Structures.

Chapter 4: Supplemental Data Transfer Functions This chapter describes a set of support

-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

APIs to facilitate data transfers. Applica-

tions using hpss_ReadList and

hpss_WriteList are potential users of

these functions.

Chapter 5: Math Library This chapter defines the 64-bit arithmetic

library API specifications and associated

data definitions.

Chapter 6: MPI-IO This chapter defines the MPI-IO specifi-

cations and associated data definitions.

Chapter 7: Site Interfaces This chapter defines the Account Valida-

tion and Gatekeeper Site Interface

specifications and associated data

definitions.

Chapter 8: ACL API This chapter defines the specifications

and associated data definitions for the

Acces Control List (ACL) API.

Appendix A: Programming Examples This appendix provides some example

code for reading and writing HPSS files.

Appendix B: Makefile Examples This appendix provides example Make-

files for building client applications on

different platforms.

Appendix C: Notes This appendix provides notes on IOD

usage.

Appendix D: Acroynms This appendix provides a list of acro-

nyms used in this document.

Appendix E: References This appendix lists documents cited in

the text as well as other reference

materials.

Appendix F: MPI-IO Programming Examples This appendix provides example code

for using the HPSS MPI-IO programming

interface.

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use literally,

such as functions, commands or keywords.

Italic Italic words or characters represent variable values to be supplied.

[] Brackets enclose optional items in syntax and format descriptions.

{ } Braces enclose a list of items to select in syntax and format descriptions.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-1
Release 4.2, Revision 1

Chapter 1. Overview

The High Performance Storage System (HPSS) provides scalable parallel storage systems for highly paral-

lel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting

the high end of storage system and data management requirements, HPSS is scalable and designed for

large storage capacities, and to use network-connected storage devices to transfer data at rates up to mul-

tiple gigabytes per second. Listed below are the programming interfaces for accessing data from HPSS.

1.1. Client API

1.1.1. Purpose

The purpose of the Client API is to provide an interface which mirrors the POSIX.1 specification where

possible to provide ease of use to the POSIX application programmer. In addition, extensions to allow the

programmer to take advantage of the specific features provided by HPSS are provided (e.g., storage/

access hints passed on file creation, parallel data transfers, migration, and purge).

1.1.2. Components

The Client API consists of these major parts:

• File Open/Creation and Close Operations

• File Data Access Operations

• Fileset/Junction Creation and Deletion Operations

• File Attribute Operations

• File Name Operations

• Directory Creation and Deletion Operations

• Directory Access Operations

• Working Directory Operations

• Client API Control Operations

• DCE Login Context Routines

• Bitfile Server Statistic Operations

Chapter 1. Overview

1-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

File Open/Creation and Close Operations provide functions to create a file, open existing files and close

previously opened files. The functions within this section are hpss_Open, hpss_Close, hpss_Create,

hpss_OpenBitfile and hpss_ReopenBitfile.

File Data Access Operations provide functions to read from and write data to HPSS files. The functions

within this section include hpss_Lseek, hpss_Read, hpss_ReadList, hpss_SetFileOffset, hpss_Write, and

hpss_WriteList.

Fileset/Junciton Creation and Deletion Operation provide functions to create and delete filesets and junc-

tions. Functions within this sections include hpss_FilesetCreate, hpss_FilesetDeletes,

hpss_FilesetGetAttributes, hpss_FilesetSetAttributes, hpss_FilesetListAll, hpss_JunctionCreate and
hpss_JunctionDelete.

File Attribute Operations include functions to query and alter a file’s attribute values (both via POSIX con-

sistent interfaces and extended HPSS interfaces), and determine a client’s accessibility to a file or directory.

Functions within this section are hpss_Access, hpss_AcctCodeToName, hpss_AcctNameToCode,
hpss_Chacct, hpss_ChacctByName, hpss_Chmod, hpss_Chown, hpss_ConvertIdsToNames,
hpss_ConvertNamesToIds, hpss_DeleteACL, hpss_Fclear, hpss_FileGetAttributes,

hpss_FileGetXAttributes, hpss_FileSetAttributes, hpss_Fstat, hpss_Ftruncate, hpss_GetAcct,
hpss_GetAcctName, hpss_GetACL, hpss_GetListAttrs, hpss_Lstat, hpss_Migrate, hpss_Purge,

hpss_SetACL, hpss_SetAcct, hpss_SetAcctByName, hpss_SiteIdToName, hpss_NameToId
hpss_Stage, hpss_Stat, hpss_Statfs, hpss_Statvfs, hpss_Truncate, hpss_Umask, hpss_UpdateACL,

hpss_Utime, and hpss_PurgeLock.

File Name Operations provide functions to rename files and directories and remove a name associated

with a file. Functions within this section include hpss_Link, hpss_Readlink, hpss_Rename,

hpss_Symlink, and hpss_Unlink.

Directory Creation and Deletion Operations provide functions to make and remove directories. Functions

within this section include hpss_Mkdir and hpss_Rmdir.

Directory Access Operations provide functions to read the directory entries from a directory. Functions

within this section include hpss_Closedir, hpss_Opendir, hpss_ReadAttrs, hpss_Readdir, and

hpss_Rewinddir.

Working Directory Operations provide functions to query and alter a thread’s current working directory.

Functions within this section include hpss_Chdir, hpss_Chroot, and hpss_Getcwd.

Client API Control Operations provide functions to update and clean up a thread's Client API state infor-

mation. Functions within this section include hpss_GetConfiguration, hpss_LoadThreadState,
hpss_LoadDefaultThreadState, hpss_ThreadCleanUp, and hpss_SetConfiguration. Also included is an

important internal routine: hpss_ClientAPIInit. This API will not be used by most applications.

DCE Login Context Operations provide convenience functions to establish an application program's DCE

login context, and subsequently purge the login context. An application program which is calling the Cli-

ent API library must run on behalf of a DCE principal. Either the user can login to a DCE account prior to

submitting the application program, or the hpss_SetLoginContext function may be called from the appli-

cation. The name of the DCE principal and associated keytab file name are supplied to the function. Prior

to exiting the application, the user must call hpss_PurgeLoginContext to delete the security context and

terminate the thread which maintains the context.

Bitfile Server statistics operations provide the ability to get and reset the stage, migration, purge, and

delete counts for the Bitfile Server. The functions that provide these capabilities are hpss_GetBFSStats
and hpss_SetBFSStats.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-3
Release 4.2, Revision 1

1.1.3. Constraints

The following constraints are being imposed by the Client API:

• The validity of open files and directories at the time of fork is undefined in the child process.

• The validity of open files and directories is lost across calls to any of the family of exec calls.

• The designed client API works only with applications that make use of both the POSIX Name Server

and the Bitfile Server. In particular, this API is not designed to meet the needs of clients that will per-

form the Name Server functionality internally and/or will bypass the Bitfile Server when performing

storage operations.

1.1.4. Libraries

Two Client API libraries are provided. Applications issuing HPSS Client API calls must link one of the

following libraries:

libhpss.a HPSS client library

libhpss_ipi.a Same as libhpss.a, but also provides HPSS IPI-3 support. The HPSS IPI-3

support library libhpssipi3.a must also be linked. In addition, it is required

to include the IPI-3 library by specifying -lipi3 when compiling / linking

the application. Also, for IPI-3 transfers, the HPSS_TRANSFER_TYPE

environment variable must be set to IPI3. Refer to section 6.6.

In addition, the following libraries must be linked:

libEncina.a

libdce.a

1.1.5. Environment Variables

A description of environment variables used by the Client API is provided in this section. In most cases,

explicit setting of these environment variables is only required if HPSS was installed with non-default val-

ues. Contact your administrator to determine the values being used or refer to the <hpss_directory>/con-

fig/hpss_env file (e.g. /opt/hpss/config/hpss_env) for the environment variable settings. The following

environment variables can be used to control the Client API’s working environment:

The HPSS_LS_NAME defines the CDS name of the Location Server RPC group entry for the HPSS system

that the Client API will attempt to contact. The default is /.:/hpss/ls/group.

The HPSS_MAX_CONN identifies the integer value that will be used as the maximum number of allowed

connections. The default is zero, which is equal to the default supported by the HPSS connection manage-

ment software - currently 150.

Chapter 1. Overview

1-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

The HPSS_KTAB_PATH defines the name of the file containing the DCE security keys necessary for suc-

cessfully initializing the Client API. The default is /krb5/hpssclient.keytab.

The HPSS_HOSTNAME environment variable is used to specify the host name to be used for TCP/IP

ports created by the Client API. The default value is the default host name of the machine on which the

Client API is running. This value can have a significant impact on data transfer performance for data

transfers that are handled by the Client API (i.e., those that use the hpss_Read and hpss_Write interfaces).

The HPSS_TCP_WRITESIZE environment variable is used to specify the amount of data to be written

with each individual request to write data to a network connection during a data transfer. For some net-

works, writing less than the entire size of the client buffer has resulted in improved throughput. This envi-

ronment variable may not affect the actual value used, based on the contents of the HPSS network options

file.

The HPSS_TRANSFER_TYPE environment variable is used to specify the data transport mechanism to

be used for data transfers handled by the Client API. Valid values are either "TCP" for TCP/IP transfers or

"IPI3" for IPI-3 transfers over HIPPI. The default value is "TCP". Note that the Client API library (lib-

hpss.a or libhpss_ipi.a) must be linked by the application for the transfer to be performed via IPI-3 over

HIPPI.

The HPSS_PRINCIPAL environment variable is used to specify the DCE principal to be used when initial-

izing the HPSS security services. The default value is hpss_client_api. This variable is primarily intended

for use by HPSS servers that utilize the Client API.

The HPSS_SERVER_NAME environment variable is used to specify the server name to be used when ini-

tializing the HPSS security services. The default value is "/.:/hpss/client". This variable is primarily

intended for use by HPSS servers that utilize the Client API.

The Client API, if compiled with debugging enabled, uses two environment variables to control printing

debug information. HPSS_DEBUG, if set to a non-zero value, will enable debug messages. By default,

these messages will go to the standard output stream. If HPSS_DEBUGPATH is set, however, these mes-

sages will be directed to the file indicated by this environment variable. Two special cases for the debug

path exist: "stdout" and "stderr", which will use the standard output or standard error I/O streams, respec-

tively.

The HPSS_DESC_NAME enviornment variable is used to place a descriptive name in any HPSS mes-

sages logged by the Client API Library. The default value is “Client Application “. This variable is only

used when logging is enabled in the library.

The HPSS_BUSY_RETRIES environment variable is used to control the number of retries to be performed

when a request fails because the Bitfile Server does not currently have an available thread to handle that

request. A value of zero indicates that no retries are to be performed. A value of negative one indicates

that retries should be attempted until either the request succeeds or fails for another reason. The default

value is 3.

The HPSS_BUSY_DELAY environment variable is used to control the number of seconds to delay

between retry attempts. The default value is 15.

The HPSS_RETRY_STAGE_INP environment variable is used to control whether retries are attempted on

opens of files in a Class of Service that is configured for background staging on open. A non-zero value

indicates that opens which would return -EINPROGRESS to indicate that the file is being staged will be

retried (using the same control mechanisms described in the previous paragraph). A value of zero indi-

cates that the -EINPROGRESS return code will be returned to the client. The default value is zero.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-5
Release 4.2, Revision 1

The HPSS_REUSE_CONNECTIONS environment variable is used to control whether TCP/IP connec-

tions are to be left open as long as a file is opened or are to be closed after each read or write request. A

non-zero value will cause connections to remain open, while a value of zero will cause connections to be

closed. The default value is zero.

The HPSS_USE_PORT_RANGE environment variable is used to control whether the HPSS Mover(s)

should use the configured port range when making TCP/IP connections for read and write requests. A

non-zero value will cause the Mover(s) to use the port range. A value of zero will cause the Mover(s) to

allow the operating system to select the port number.

The HPSS_NUMRETRIES environment variable is used to control the number of retries to attempt when

an operation fails. Currently this class of operation includes library initialization and communications fail-

ures. A value of zero indicates that no retries are to be performed, and value of negative one indicates that

the operation will be retried until successful. The default value is 4.

The HPSS_TOTAL_DELAY environment variable is used to control the number of total seconds to con-

tinue retrying requests. A value of zero indicates that no there is no time limit. The default value is 0.

The HPSS_REGISTRY_SITE_NAME environment variable is used to specify the name of the security

registry used when inserting security information into connection binding handles. This is only needed

when the client must support DFS in a cross-cell environment. The default registry is “/.../dce.clear-

lake.ibm.com”

The HPSS_DMAP_WRITE_UPDATES environment variable is used control the frequency of cache inval-

idates that are issued to the DMAPI file system while writing to a file that is mirror in HPSS. The default

value is 20.

The HPSS_GKTOTAL_DELAY is used to control the total number of seconds to continue retrying a Gate-

keeper request before the request times out. A value of zero indicates that there is no time limit. The

default value is 600.

The HPSS_LIMITED_RETRIES is used to control the number of retry attempts before a limited retry

error operation fails. The default value is 1

The HPSS_DISABLE_CROSS_CELL is used to control cross-cell traversal. When cross cell traversal is

disabled, a client will not be allowed to access directories which are located in another DCE cell. The

default value is 0.

The HPSS_DISABLE_JUNCTIONS is used to control junction traversal. When junction traversal is dis-

abled, a client will not be allowed to access directories which require traversal to the directory via a DFS or

HPSS junction. The default value is 0.

1.2. Supplemental Data Transfer Functions

1.2.1. Purpose

The purpose of the supplemental data transfer APIs is to provide a convenience library of functions for

those clients supplying their own data transfer logic. For example, applications calling the hpss_ReadList

or hpss_WriteList functions may want to use these APIs to handle their end of the data transfer.

Chapter 1. Overview

1-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

1.2.2. Components

The supplement data transfer APIs consist of these major parts:

1.2.2.1. IPI-3 Data Transfer

The purpose of the IPI-3 data transfer library is to provide an interface to send and receive data when

using IPI-3 as the data transfer protocol.

1.2.2.2. Mover Socket (Parallel TCP/IP Data Transfer)

The purpose of the Mover Socket library is to provide interfaces to send and receive parts of an HPSS par-

allel data transfer, when using TCP/IP as the data transport mechanism. Interfaces are provided for both

the transfer responder (typically an HPSS Mover, which controls the order of the transfer) and the transfer

initiator (typically an HPSS client or Mover, which responds to requests made by the responder).

1.2.2.3. Mover Protocol

The purpose of the Mover Protocol library is to provide an interface that can be used to send and receive

the various messages used by the HPSS Mover-to-Mover Protocol. The Mover Protocol allows a light-

weight protocol that can be used for flow control during large data transfers, as well as supporting negoti-

ated data transfer mechanisms and sizes of the current piece of the transfer.

1.2.2.4. Parallel Data Transfer

The purpose of the Parallel Data Transfer library is to provide an interface to send and receive the headers

used by HPSS to delineate parts of a parallel data transfer when using TCP/IP as the data transport mech-

anism. The use of this library provides the transfer of data across many parallel data connections using

multiple sockets and allows the data to be sent in the most efficient order. In other words, this library not

only allows the data to be sent over parallel socket connections, but also allows the data to be sent in any

order.

1.2.2.5. Network Options

The purpose of the Network Options library is to provide an interface to query the information contained

in the HPSS network options configuration file for the local machine. This file contains information about

network options that may be configured differently for specific network and/or nodes with which the

local machine is communicating.

1.2.3. Constraints

The following constraints are being imposed by the supplemental APIs:

• Only 2 gigabytes of data may be transferred by any one library call.

• The client must supply a unique transfer identifier in the parallel data transfer calls to identify the

data.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-7
Release 4.2, Revision 1

1.2.4. Libraries

The HPSS client libraries listed under 3.1.3 must be linked.

1.3. Non-DCE Client API

1.3.1. Purpose

The purpose of the Non-DCE Client API (NDAPI) is to provide an interface which mirrors the standard

HPSS Client API specification to provide HPSS access to applications which run in environments lacking

DCE and/or Encina.

1.3.2. Components

With the exception of ACL APIs, the NDAPI provides the same procedure calls as the standard Client API

(See section 1.1.2.).

In addition, the hpss_PVRetrievals function is provided to enable non-DCE clients to retrieve usage

information about particular physical volumes.

1.3.3. Constraints

In addition to the constraints imposed by the standard Client API (See section 1.1.3.), the following con-

straint is being imposed by the Non-DCE Client API:

• Client authentication is not yet supported. A client’s HPSS/DCE identity is based on their Unix iden-

tity. Therefore, Unix and DCE UIDs should be consistent for client utilizing the Non-DCE Client API.

• Transactional support is not yet provided. An API returning with an EPIPE indicates a communica-

tions problem with the Non-DCE Client Gateway, between the time that the command was issued and

the time the reply was received. In cases where this error is returned from a API that modify the state

of an HPSS object, the failure or success of the operation can not be assumed and the state of the object

should be queried before continuing.

1.3.4. Libraries

The Non-DCE Client API library has the same name as the standard non-IPI version Client API (See sec-

tion 1.1.4.).

libhpss.a HPSS client library

Chapter 1. Overview

1-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

However, when using the Non-DCE Client API, it is not necessary to link either libEncina.a or libdce.a.

1.3.5. Environment Variables

The Non-DCE Client API supports most of the environment variables supported by the standard Client

API (See section 1.1.5.) However, the following environment variables are not supported:

• HPSS_LS_NAME

• HPSS_TRANSFER_TYPE

• HPSS_SERVER_NAME

• HPSS_DMAP_WRITE_UPDATES

In addition to the standard Client API environment variables, the Non-DCE Client API supports the fol-

lowing environment variables:

The HPSS_NDCG_NAME environment variable is used to specify the server name to be used when ini-

tializing the HPSS security services. The default value is /.:/hpss/client.

The HPSS_NDCG_TCP_PORT environment variable defines the default port location for the Non-DCE

Client Gateway with which the Non-DCE Client API will communicate. The value can be overridden by

appropriate entries in the HPSS_NDCG_SERVERS environment variable. The default value is 9590.

The HPSS_NDCG_SERVERS environment variable defines the name of the server on which the Non-

DCE Client Gateway resides. Multiple servers may be separated by a colon (:). Also, it is possible to explic-

itly set the TCP port on a per server basis by following the server name with a forward slash (/) and a port

number. The Non-Client API will randomly pick one of the specified entries to use as the gateways

address. For example, a string “hpss/8002:pluto” would define two Non-DCE Client Gateways. One

(hpss) uses an explicit port number, and the other (pluto) uses the value from the

HPSS_NDCG_TCP_PORT.

The HPSS_LOGGING_PORT environment variable defines the port number of the Log Client to which

log messages will be sent. The default value is 8001.

The HPSS_LOGGING_TYPE environment variable defines the types of messages to log. It consists of a

list of log type strings, separated by colons (:). For example “CS_ALARM:CS_STATUS” would enable the

logging of alarm and status messages. Valid log types are: CS_ALARM, CS_EVENT, CS_REQUEST,

CS_SECURITY, CS_ACCOUNTING, CS_DEBUG, CS_TRACE, CS_STATUS. The default value is

“CS_ALARM:CS_EVENT:CS_REQUEST:CS_SECURITY”.

1.4. 64-bit Arithmetic Library

1.4.1. Purpose

Some HPSS Client APIs require 64-bit fields. The operating system and C compiler on many workstation

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-9
Release 4.2, Revision 1

platforms may not support 64-bit integer operations. As a result, in order to support large integer fields, a

set of math libraries have been supplied until 64-bit support is available on all pertinent vendor platforms.

1.4.2. Components

The Math Libraries consist of the following macros:

• add64m Add two 64-bit unsigned integers

• add64_3m Add two 64-bit unsigned integers and store the result in a separate parameter.

• and64m Perform a bitwise AND of two 64-bit unsigned integers

• bld64m Build a 64-bit unsigned integer from two 32-bit unsigned integers

• cast64m Cast a 32-bit unsigned integer into a 64-bit unsigned integer

• div64m Divide a 64-bit unsigned integer by a 32-bit unsigned integer

• div2x64m Divide a 64-bit unsigned integer by a 64-bit unsigned integer

• div_cl64m Divide a 64-bit unsigned integer by a 32-bit unsigned integer and return the ceil-

ing

• div_2xcl64m Divide a 64-bit unsigned integer by a 64-bit unsigned integer and return the ceil-

ing

• eqz64m Determine if a 64-bit unsigned integer is zero

• eq64m Compare two 64-bit unsigned integers for equality

• high32m Extract the high order 32-bits of a 64-bit unsigned integer

• le64m Perform less than or equal to check between two 64-bit unsigned integers

• low32m Extract the low order 32-bits of a 64-bit unsigned integer

• lt64m Perform less than check between two 64-bit unsigned integers

• ge64m Perform greater than or equal to check between two 64-bit unsigned integers

• gt64m Perform greater than check between two unsigned 64-bit integers

• mod64m Modulus a 64-bit unsigned integer by a 32-bit unsigned integer

• mod2x64m Modulus a 64-bit unsigned integer by a 64-bit unsigned integer

• mul64m Multiply a 64-bit unsigned integer by a 32-bit unsigned integer

• neqz64m Determine if a 64-bit unsigned integer is nonzero

Chapter 1. Overview

1-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

• neq64m Determine if two 64-bit unsigned integers are not equal

• not64m Perform a bitwise NOT of a 64-bit unsigned integer

• or64m Perform bitwise OR of two 64-bit unsigned integers

• shl64m Shift a 64-bit unsigned integer left by an unsigned 32-bit integer count

• shr64m Shift a 64-bit unsigned integer right by an unsigned 32-bit integer count

• sub64m Subtract a 64-bit unsigned integer from another 64-bit unsigned integer

• add64_3m Subtract two 64-bit unsigned integers and store the result in a separate parameter.

1.4.3. Constraints

The following constraints are being imposed by the 64-bit arithmetic functions:

• 64-bit unsigned integer operations are sufficient, i.e. 64-bit signed arithmetic operations are not sup-

ported.

• Multiply functions are limited to 64-bit by 32-bit unsigned operations. For example, a 64-bit unsigned

integer may be multiplied by a 32-bit unsigned integer. No 64-bit by 64-bit operations are supported

for this category of functions.

1.4.4. Libraries

The 64-bit arithmetic functions are included in the libhpss libraries. Refer to Section 3.1.3 for a description

of the libraries.

1.5. MPI-IO API

1.5.1. Purpose

The MPI-IO API is a subset of the MPI-2 standard. It gives applications written for a distributed memory

programming model an interface that offers coordinated access to HPSS files from multiple processes.

These processes can read and write data from a single file in parallel using HPSS’s third-party transfer

facilities. The interface also lets applications specify discontiguous patterns of access to files and memory

buffers using the same “datatype” constructs that the Message-Passing Interface (MPI) offers. Files read

and written through the HPSS MPI-IO can also be accessed through the HPSS Client API, so even though

the MPI-IO subsystem does not offer all the migration, purging, and caching operations that are available

in HPSS, parallel applications can still do these tasks through the HPSS Client API.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-11
Release 4.2, Revision 1

1.5.2. Components

The MPI-IO API consists of the following major categories:

• File Manipulation

• File Access

• File Interoperability

• File Consistency

• Error Handling

• File Hints

File Manipulation APIs are used to open (including create), close, or delete MPI-IO files, and to set or get

characteristics of an open file, such as file size and file view. Some of these APIs are collective and some

are noncollective; collective APIs require that all the processes that opened a file must participate in the

operation. The File Manipulation APIs are: MPI_File_open, MPI_File_close, MPI_File_delete,

MPI_File_set_size, MPI_File_preallocate, MPI_File_get_size, MPI_File_get_group,

MPI_File_get_amode, MPI_File_set_info, MPI_File_get_info, MPI_File_set_view, MPI_File_get_view.

File Access APIs are used to read or write files. The APIs within this category may use either explicit off-

sets, individual (per-process) file pointers, or shared file pointers to specify the position in the file for read-

ing or writing. These APIs may be either collective or noncollective. Furthermore, reads and writes may

be either blocking or nonblocking.

The File Access APIs for explicit offset positioning include: MPI_File_read_at, MPI_File_read_at_all,
MPI_File_write_at, MPI_File_write_at_all, MPI_File_iread_at, MPI_File_iwrite_at,
MPI_File_read_at_all_begin, MPI_File_read_at_all_end, MPI_File_read_at_all_end,

MPI_File_write_at_all_begin, and MPI_File_write_at_all_end.

The File Access APIs for individual file pointer positioning include: MPI_File_read, MPI_File_read_all,
MPI_File_write, MPI_File_write_all, MPI_File_iread, MPI_File_iwrite, MPI_File_read_all_begin,

MPI_File_read_all_end, MPI_File_write_all_begin, MPI_File_Write_all_end, MPI_File_seek,

MPI_File_get_position, and MPI_File_get_byte_offset.

The File Access APIs for shared file pointer positioning include: MPI_File_read_shared,

MPI_File_write_shared, MPI_File_iread_shared, MPI_File_iwrite_shared, MPI_File_read_ordered,

MPI_File_write_ordered, MPI_File_read_ordered_begin, MPI_File_read_ordered_end,

MPI_File_write_ordered_begin, MPI_File_write_ordered_end, MPI_File_seek_shared, and

MPI_File_get_position_shared.

File Interoperability APIs are used to specify how file data must be converted when read or written, if the

data representation in the file differs from that in the program. These APIs include:

MPI_File_get_type_extent and MPI_Register_datarep.

File Consistency APIs are used to allow applications to coordinate accesses by multiple processes in order

to guarantee the consistency of data in a file. These APIs include: MPI_File_set_atomicity,

MPI_File_get_atomicity, and MPI_File_sync.

Chapter 1. Overview

1-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Error Handling APIs enable applications to modify the default MPI error handling facilities provided for

files on a per-file-handle basis. These APIs include: MPI_File_create_errhandler,
MPI_File_set_errhandler, MPI_File_get_errhandler, MPI_File_call_errhandler.

File Hints APIs are used to provide system specific information about a file, to enable MPI-IO to poten-

tially optimize data accesses. These APIs include: MPI_Info_create, MPI_Info_set, MPI_Info_delete,

MPI_Info_get, MPI_Info_get_valuelen, MPI_Info_get_nkeys, MPI_Info_get_nthkey, MPI_Info_dup,

and MPI_Info_free.

1.5.3. Constraints

The following constraints are being imposed by the MPI-IO API:

• The host environment must provide a host MPI message passing library. That is, MPI-IO is currently

layered over existing MPI-1 functionality. It is designed to be compatible with any MPI-2 implementa-

tion as well, although there may be redefinition conflicts in some MPI-2 environments.

• The MPI library must support multithreading; specifically, it must permit multiple threads within a

process to issue MPI calls concurrently, subject to the limitations described in the MPI-2 standard.

• MPI applications must be compiled with the <mpio.h> header file to properly link with the MPI-IO

library.

1.5.4. Libraries

Applications must be linked with the MPI-IO API library:

libmpioapi.a MPI-IO library

In addition, the following HPSS libraries must be linked:

libhpss.a HPSS API and common utilities library

These libraries in turn require that the following are linked:

libmpi.a

libEncina.a

libEncClient.a

libdce.a

Lastly,there are platform-specific libraries on which the preceding libraries depend, and you must also

include these libraries.

For AIX:

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-13
Release 4.2, Revision 1

libdcepthreads.a

libpthreads_compat.a

libpthreads.a

For Solaris:

libnsl.a

libsocket.a

For the Solaris loader, you also have to specify -z muldefs to allow the presence of multiple definitions

across the libraries.

Note: the libraries should be loaded in the order indicated.

1.5.5. Environment Variables

Any of the HPSS Client API environment variables may be used by an MPI-IO application. (Refer to the

HPSS Client API environment variables, section 1.1.5). In particular, all MPI-IO applications need to spec-

ify an appropriate site-dependent value for:

HPSS_LS_NAME HPSS Location Server

In addition, applications may wish to adjust the delay used by HPSS for busy retries. MPI-IO applications

may issue concurrent HPSS accesses that result in some accesses having to wait while the file is busy.

Since the HPSS client API sleeps before retrying, if the default wait period of 15 seconds is inappropriate,

try adjusting HPSS_BUSY_DELAY to improve the application performance. For example, if the applica-

tion is using concurrent, noncollective, small transfers to the same file, resetting the delay to 0 could result

in better performance. On the other hand, if the application is using large transfers, resetting the delay to

30 could result in better performance.

In order to provide distributed multiprocess applications access to a user’s DCE credentials cache, which

is needed to authenticate a user to the HPSS servers, each user should create a keytab file. This keytab file

will contain the user’s DCE login name and encrypted password, which can be used to authenticate the

user from each of the processes at initialization time. The keytab file must be accessible to all the processes

(i.e., must be located on a file system common to all the processors on which the processes will execute).

To create the keytab file, the user must use the rgy_edit command interactively and after the prompt enter:

rgy_edit=>kta -p login_name -f keytab_path

The user will be prompted for a password, and asked to verify the password by retyping it. The permis-

sions for the keytab file should be set to disallow access by the world (e.g., ‘640’ is recommended). Note

that this keytab file only needs to be created once for each environment, but it would have to be updated

for any password changes for the user.

When running a distributed MPI-IO application, use the following environment variables to guarantee the

DCE login context will be consistent across the processes:

Chapter 1. Overview

1-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPIO_LOGIN_NAME login_name

MPIO_KEYTAB_PATH keytab_path

where login_name is as used to create the keytab file, and keytab_path is the path name of the keytab file.

The following environment variable can be used to enable error messages to be issued from MPI-IO:

MPIO_DEBUG any_nonzero_integer_value

1.6. Storage Concepts

This section defines key HPSS storage concepts which have a significant impact on the usability of HPSS.

Configuration of the HPSS storage objects and policies is the responsibility of your HPSS administrator.

1.6.1. Class of Service

Class of Service (COS) is an abstraction of storage system characteristics that allows HPSS users to select a

particular type of service based on performance, space, and functionality requirements. Each COS

describes a desired service in terms of characteristics such as minimum and maximum file size, transfer

rate, access frequency, latency, and valid read or write operations. A file resides in a particular COS and

the class is selected when the file is created. Underlying a COS is a storage hierarchy that describes how

data for files in that class are to be stored in HPSS.

COS is specified at file create time. COS hints and priority structures are passed to HPSS in the

hpss_Open function. Contact your HPSS administrator to determine the Classes of Service which have

been defined. The following command may also be used to list the defined Classes of Service:

lshpss -cos

Refer to Chapter 5 of the HPSS User's Guide for information on the lshpss command. A class of service is

implemented by a Storage Hierarchy of one to many Storage Classes. Storage Hierarchies and Storage

Classes are not directly visible to the user, but are described below since they map to Class of Service. The

relationship between storage class, storage hierarchy, and COS is shown in Figure 3-1.

1.6.2. Storage Class

An HPSS Storage Class is used to group storage media together to provide storage with specific character-

istics for HPSS data. The attributes associated with a Storage Class are both physical and logical. Physical

media in HPSS are called physical volumes. Physical characteristics associated with physical volumes are

the media type, block size, the estimated amount of space on volumes in this class, and how often to write

tape marks on the volume (for tape only). Physical media are organized into logical virtual volumes. This

allows striping of physical volumes. Some of the logical attributes associated with the Storage Class are

virtual volume block size, stripe width, data transfer rate, latency associated with devices supporting the

physical media in this class, and storage segment size (disk only). In addition, the Storage Class has

attributes that associate it with a particular migration policy and purge policy to help in managing the

total space in the Storage Class.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-15
Release 4.2, Revision 1

1.6.3. Storage Hierarchy

An HPSS Storage Hierarchy consists of multiple levels of storage with each level representing a different

storage media (i.e., a storage class). Files are moved up and down the Storage Hierarchy via stage and

migrate operations, respectively, based upon storage policy, usage patterns, storage availability, and user

request. For example, a Storage Hierarchy might consist of a fast disk, followed by a fast data transfer and

medium storage capacity robot tape system, which in turn is followed by a large data storage capacity, but

relatively slow data transfer tape robot system. Files are placed on a particular level in the hierarchy

depending on the migration policy and staging operations. Multiple copies of a file may also be specified

in the migration policy. If data is duplicated for a file at multiple levels in the hierarchy, the more recent

data is at the higher level (lowest level number) in the hierarchy. Each hierarchy level is associated with a

single storage class.

1.6.4. File Family

A file family is an attribute of an HPSS file that is used to group a set of files on a common set of tape vir-

tual volumes. Release 4.1 supports grouping of files only on tape volumes. In addition, families can only

be specified in Release 4.1 by associating a family with a fileset, and creating the file in the fileset. When a

file is migrated from disk to tape, it is migrated to a tape virtual volume assigned to the family associated

with the file. If no family is associated with the file, the file is migrated to the next available tape not asso-

ciated with a family (actually to a tape associated with family zero). If no tape virtual volume is associated

with the family, a blank tape is reassigned from family zero to the file’s family. The family affiliation is pre-

served when tapes are repacked. Configuring file families is a System Administrator function.

1.7. User IDs

After the HPSS system is configured, the necessary accounts must be created for HPSS users. Contact your

HPSS administrator to add an account.

For Client API and MPI-IO access, a DCE account must be created. The administrator can use the follow-

ing command to add a new DCE account. (Contact your HPSS administrator to add new DCE accounts.)

hpssuser -add user -dce

Chapter 1. Overview

1-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

1.8. Access Control List API

1.8.1. Purpose

The access control list API is a set of routines for managing access control lists (ACLs). The routines pro-

vide a way to convert ACLs from string format into a form suitable for use by the client API routines.

They also provide a way to call the client API routines using ACLs and string format, and a way to convert

ACLs back from client API format to string format. In particular, the string conversion routines take care

of translating user, group and cell names into UIDs, GIDs and Cell IDs respectively.

These APIs are supplied in a library named libhacl.a.

Chapter 1. Overview

HPSS Programmer’s Reference, Vol. 1 December 2000 1-17
Release 4.2, Revision 1

1.8.2. Components

The access control list library (libhacl) contains the following routines:

• hacl_ConvertACLToHACL - convert ACL to string format

• hacl_ConvertHACLToACL - convert ACL to HPSS format

• hacl_ConvertHACLToString - convert ACL to a form suitable for printing

• hacl_ConvertHACLPermsToPerms - convert permission string to HPSS format

• hacl_ConvertHACLTypeToType - convert ACL entry type to HPSS format

• hacl_ConvertPermsToHACLPerms - convert HPSS permission mask to string

• hacl_ConvertStringsToHACL - convert ACL strings to HACL format

• hacl_ConvertTypeToHACLType - convert ACL entry type to string

• hacl_DeleteHACL - delete selected entries from an object’s ACL

• hacl_GetHACL - get an object’s ACL

• hacl_SetHACL - replace an object’s ACL with a new one

• hacl_SortHACL - sort ACL into canonical order

• hacl_UpdateHACL - change selected entries in an object’s ACL

1.8.3. Constraints

These routines do not currently work with the non-DCE Client API library.

1.8.4. Libraries

The access control list APIs are available in in libhacl.a. Some of these routines also call client API func-

tions defined in libhpss.a.

Chapter 1. Overview

1-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

1.9. DCE User Accounts

As mentioned in the previous section, the Client API and MPI-IO requires the user be logged into DCE.

The following command is used to issue a DCE login:

dce_login [principal_name] [password]

When this command is entered, the principal's identity is validated, and the network credentials are

obtained. If principal name or password are not supplied, dce_login will prompt for them.

When the principal's DCE login context is no longer required, the following command may be used to

destroy the login context and associated credentials:

kdestroy

Other DCE commands which might be of interest to the user are:

klist list the primary principal and tickets held in the DCE
credentials cache

kinit Refresh a DCE credentials cache

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-1
Release 4.2, Revision 1

Chapter 2. Client API Functions

This chapter specifies the HPSS client programming interface. Specifically, the following information is

provided:

• Application Programming Interfaces (APIs)

• Data Definitions

2.1. API Interfaces

This section describes all API interfaces which are provided for use by another HPSS subsystem or

by a client external to HPSS. The API interface specification includes the following information:

• Name

• Synopsis

• Description

• Parameters

• Return values

• Error conditions

• See also

• Notes

Note that for each thread that issues an HPSS Client API call, a call must be made to

hpss_ThreadCleanUp with the thread id for that thread. This is necessary so that the client API

can free state and memory allocated to that thread.

Note that there are a number of errors that may be returned from a Client API call which are not

actually errors generated by performing the call, but are caused by a failure of the client API to suc-

cessfully initialize. These values may be returned from any routine and include:

EAGAIN An HPSS server is not ready or received a communication error,

and the request could not be retried.

ENOCONNECT The Client API could not connect to either the Location Server,

Name Server or Bitfile Server.

ENOMEM Memory could not be allocated for internal Client API State.

EPERM The user's client credentials could not be established.

EIO An internal HPSS error occurred.

Chapter 2. Client API Functions

2-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ESTALE The open file or directory is no longer valid - close and reopen the

file or directory to reestablish a valid open descriptor. This error is

likely due to the connections to the HPSS servers being reset.

ETIMEDOUT An HPSS server request timed out or received a communication

error, and the request could not be successfully retried.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-3
Release 4.2, Revision 1

2.1.1. hpss_Access

Purpose
Check file accessibility.

Synopsis
#include <unistd.h>
#include "hpss_api.h"

int
hpss_Access(

char *Path, /* IN */

int Amode); /* IN */

Description
The hpss_Access function checks the accessibility of the file named by Path for the file access indi-

cated by Amode. Refer to POSIX.1 for more detailed information.

Parameters
Path Points to the path name of the file for which client accessibility is

being checked.

Amode Indicates the type of file access being checked. Refer to POSIX.1

for possible values.

Return values

If the requested access is permitted, a value of zero is returned. Otherwise, a negative value is

returned, the absolute value of which is equal to an errno value set by POSIX.1 access.

Error conditions
EACCES The permissions specified by Amode are denied, or search permis-

sion is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

EINVAL An invalid value was specified for Amode.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Chmod, hpss_FileSetAttributes.

Notes

None.

Chapter 2. Client API Functions

2-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.2. hpss_AcctCodeToName

Purpose

Finds the Account Name associated with the given Account Code

Synopsis
#include "hpss_api.h"

int

hpss_AcctCodeToName(

acct_rec_t AcctCode, /* IN */

uuid_t *Site, /* IN/OUT */

char *AcctName) /* OUT */

Description

Finds and returns the Account Name associated with a given Account Code.

Parameters
AcctCode The Account Code to look up

Site Pointer to an area that contains the UUID of the site you are inter-

ested in. If this UUID is zeroed out or null, the index for the site

managing the current working directory is used.

AcctName The Account Name associated with the given Account Code

Return Values

Upon successful completion, hpss_AcctCodeToName returns zero. Otherwise,

hpss_AcctCodeToName returns a negative value; the absolute value of that returned indicates the

specific error.

Error Conditions
EINVAL The given AccountCode is not valid.

EFAULT The AcctName is a NULL pointer

See also
hpss_AcctNameToCode

Notes
None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-5
Release 4.2, Revision 1

2.1.3. hpss_AcctNameToCode

Purpose

Finds the Account Code associated with the given Account Name

Synopsis
#include "hpss_api.h"

int

hpss_AcctNameToCode(

char *AcctName, /* IN/OUT */

uuid_t *Site, /* IN/OUT */

acct_rec_t *AcctCode) /* OUT */

Description

Finds and returns the Account Code associated with a give Account Name. The AcctCode is

returned as a string.

Parameters
AcctName The Account Name to look up

Site Pointer to an area that contains the UUID of the site you are inter-

ested in. If this UUID is zeroed out or null, the name of the site

managing the current working directory is used.

AcctCode The Account Code associated with the given Account Name

Return Values

Upon successful completion, hpss_AcctNameToCode returns zero. Otherwise,

hpss_AcctNameToCode returns a negative value; the absolute value of that returned indicates the

specific error.

Error Conditions
EINVAL The given Account Name is not valid.

EFAULT The account name or account code is a NULL pointer.

See also
hpss_AcctCodeToName

Notes
None.

Chapter 2. Client API Functions

2-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.4. hpss_Chacct

Purpose
Change the account code of an HPSS file.

Synopsis

#include "hpss_api.h"

int
hpss_Chacct(

char *Path, /* IN */

acct_rec_t AcctCode); /* IN */

Description
The hpss_Chacct routine changes the accounting code for the file or directory named by Path.

Parameters
Path Names the file for which the account code is being changed.

AcctCode Specifies the new accounting code for the file.

Return values
Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which indicates the specific error.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation or is configured for Unix-style accounting.

See also

hpss_AcctCodeToName, hpss_AcctNameToCode, hpss_ChacctByName, hpss_GetAcct,
hpss_GetAcctName, hpss_SetAcct, hpss_SetAcctByName, hpss_Chown,
hpss_SetFileAttributes

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-7
Release 4.2, Revision 1

2.1.5. hpss_ChacctByName

Purpose

Change the account code of an HPSS file or directory by specifying the account's name.

Synopsis
#include "hpss_api.h"

int

hpss_Chacct(

char *Path, /* IN */

char *AccountName) /* IN */

Description

The hpss_ChacctByName routine changes the accounting code for the file or directory named by

Path.

Parameters
Path Names the file or directory for which the account code is being

changed.

AccountName The account name corresponding to the new accounting code for

the file or directory.

Return Values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned;

the absolute value of that returned indicated the specific error.

Error Conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system imposed limit,

or a component of the pathname exceeds the system imposed

limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The client does not have appropriate privilege to perform the

operation or is configured for Unix-style accounting.

EINVAL The specified AccountName is not a valid account name.

See also

Chapter 2. Client API Functions

2-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_GetAcct, hpss_SetAcct, hpss_Chown, hpss_SetFileAttributes, hpss_GetAcctName,
hpss_SetAcctByName, hpss_Chacct

Notes
None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-9
Release 4.2, Revision 1

2.1.6. hpss_Chdir

Purpose
Change current working directory.

Synopsis

#include “hpss_api.h”

int

hpss_Chdir(
char *Path); /* IN */

Description
The hpss_Chdir function changes a thread’s current working directory to be the directory named

by Path.

Parameters
Path Specifies path name of the directory to which the current working

directory is to be changed.

Return values
Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 chdir.

Error conditions
EACCES Search permission is denied on a component of the path name.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path name is not a directory.

See also

hpss_Getcwd, hpss_Chroot.

Notes
None.

Chapter 2. Client API Functions

2-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.7. hpss_Chmod

Purpose
Change the file mode of an HPSS file.

Synopsis
#include "hpss_api.h"

int
hpss_Chmod(

char *Path, /* IN */

mode_t Mode); /* IN */

Description

The hpss_Chmod function alters the file mode associated with file named by Path.

Parameters
Path Points to the path name of the file for which the file mode is being

changed.

Mode Specifies the new value to which the file mode is to be set.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 chmod.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

hpss_Chown, hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-11
Release 4.2, Revision 1

2.1.8. hpss_Chown

Purpose

Change owner and group of an HPSS File.

Synopsis
#include "hpss_api.h"

int
hpss_Chown(

char *Path, /* IN */

uid_t Owner, /* IN */

gid_t Group); /* IN */

Description

The hpss_Chown function sets the user ID and group ID of the file named by Path to the values

specified by Owner and Group, respectively.

Parameters
Path Names the file for which the owner and group owner are being

changed.

Owner Specifies the new value for the owner of the file.

Group Specifies the new value for the group owner of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 chown. If the owner is

changed, the account code of the file or directory will also be changed to reflect that configured for

the new owner.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

Chapter 2. Client API Functions

2-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_Chmod, hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-13
Release 4.2, Revision 1

2.1.9. hpss_Chroot

Purpose

Change the root directory for the current client.

Synopsis
#include "hpss_api.h"

int

hpss_Chroot(
char *Path); /* IN */

Description

The hpss_Chroot function changes the root directory for the current client. After a successful call

to hpss_Chroot, all absolute path name operations are done relative to Path, and relative operations

cannot be made out of the subtree whose root is Path.

Parameters
Path Specifies the path name of the directory that is to become the new

root directory.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path name.

EFAULT The Path parameter is a NULL pointer.

EINVAL This call was made from the nonglobal Client API library.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path name is not a directory.

See also

hpss_Chdir, hpss_Getcwd.

Notes

Note that as currently implemented, symbolic links could allow a client to access files outside the

Chapter 2. Client API Functions

2-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

new root directory (since hpss_Chroot bookkeeping is maintained entirely in the client API but

symbolic links are generally handled in the Name Server). If this is a problem (the only current

projected client is the FTP server for anonymous FTP), changes could be made to ensure that the

symbolic links do not access files outside the subtree - failing if they do, or possibly traversing the

symbolic link contents within the client API.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-15
Release 4.2, Revision 1

2.1.10. hpss_ClientAPIReset

Purpose

Reset the current Client API control information.

Synopsis
#include "hpss_api.h"

void
hpss_ClientAPIReset(void);

Description

The hpss_ClientAPIReset routine will clean up the current Client API control information,

including closing server connections. The next Client API call should then reinitialize the control

information based on the current configuration information.

Parameters

None.

Return values

None.

Error conditions

None.

See also

hpss_GetConfiguration, hpss_SetConfiguration.

Notes

None.

Chapter 2. Client API Functions

2-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.11. hpss_Close

Purpose

Close a file.

Synopsis
#include "hpss_api.h"

int
hpss_Close(

int Fildes); /* IN */

Description

The hpss_Close function terminates the connection between the file handle, Fildes, and the file to

which it is associated. The file handle and any associated resources are deallocated and can be

reused by a subsequent call to hpss_Open.

Parameters
Fildes Specifies the file handle obtained from a previous hpss_Open.

Return values

Upon successful completion, hpss_Close returns zero. Otherwise, hpss_Close returns a negative

value; the absolute value of which is equal to an errno value set by POSIX.1 close.

Error conditions
EBADF The specified file descriptor is out of range, or does not refer to an

open file.

EBUSY The file is currently in use by another client thread.

See also

hpss_Open, hpss_OpenBitfile, hpss_ReopenBitfile.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-17
Release 4.2, Revision 1

2.1.12. hpss_Closedir

Purpose

Close an open directory stream.

Synopsis
#include "hpss_api.h"

int
hpss_Closedir(

int Dirdes); /* IN */

Description

The hpss_Closedir function closes the directory stream corresponding to the open directory stream

handle Dirdes.

Parameters
Dirdes Specifies the open directory stream handle corresponding to the

stream to be closed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 closedir.

Error conditions
EBADF The specified directory descriptor does not refer to an open

directory.

EBUSY The directory is currently in use by another client thread.

See also

hpss_Opendir.

Notes

None.

Chapter 2. Client API Functions

2-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.13. hpss_ConvertIdsToNames

Purpose

Convert UIDs to user names, GIDs to group names, and/or cell IDs to cell names.

Synopsis
int

hpss_ConvertIdsToNames(

int NumEntries, /* IN */

api_namespec_t *Specs); /* IN/OUT */

Description

The hpss_ConvertIdsToNames function converts a batch of Unix UIDs to user names, GIDs to group

names, and/or cell ids to cell names. Each entry in the Specs array tells what kind of translation is

needed for that entry. The function is provided to minimize the number of RPCs that must be used

when a non-DCE client needs to translate ACLs.

Parameters
NumEntries Number of entries in the Specs array.

Specs Pointer to an area that contains information for defining a prin-

cipal, which is to be converted, and the results of the conversion.

Return Values

Upon successful completion this routine returns zero. Otherwise it returns an error value

describing the problem.

Error Conditions
EINVAL The Specs array has an entry that contains a zero cell id.

ENOCONNECT A problem with the security registry.

EFAULT A name is too long to fit into specs

EAGAIN Default for security registry error

See also
hpss_ConvertNamesToIds

Notes

The Specs array must contain NumEntries elements of type api_name_spec_t. Each array element

has a Type field that determines how the element will be translated. If the Type is

NAMESPEC_SKIP, then the Id and CellId fields will be ignored, and the Name and CellName fields

will be set to undefined values. NAMESPEC_SKIP enables ACL editors to deal with ACL entry

types, such as the mask object, which do not contain any ids.

If the Type is set to NAMESPEC_CELL, then the CellId field will be translated into a cell name,

which is returned in the CellName field. In this case, the Id field will be ignored and the Name field

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-19
Release 4.2, Revision 1

will be set to an undefined value. On the other hand, if the Type is set to NAMESPEC_USER or

NAMESPEC_GROUP, then the function returns the user or group name in the Name field as well

as filling in the CellName field.

If, at any point during the translation process, an array entry is found that cannot be translated, the

routine will return immediately. In this case, the Name and CellName fields of each Specs array entry

should be considered undefined, but the Type, Id and CellId fields will remain unchanged from their

initial values. Therefore the caller may need to keep a copy of the Specs array if the name fields will

be needed again.

If the principal cannot be found in the desired cell, then the routine does not return an error, but

rather just stores an ASCII representation of the principal’s id in the Name field. Likewise, if the

cell cannot be found in the trusted cell table, then the routine returns the cell id in the CellName
field. This allows the caller to deal with principals and/or cells that no longer exist. The caller may

detect this“error” by scanning for numeric data in these fields.

Chapter 2. Client API Functions

2-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.14. hpss_ConvertNamesToIds

Purpose

Convert user names to UIDs, group names to GIDs , and/or cell names to cell IDs.

Synopsis
int

hpss_ConvertNamesToIds(

int NumEntries, /* IN */

api_namespec_t *Specs); /* IN/OUT */

Description

The hpss_ConvertNamesToIds function converts an array of user names to UIDs, group names to

GIDs, and/or cell names to cell IDs. Each entry in the Specs array tells what kind of translation is

needed for that entry. The function is provided to minimize the number of RPCs that must be used

when a non-DCE client needs to translate ACLs.

Parameters
NumEntries Number of entries in the Specs array.

Specs Pointer to an area that contains information for defining a prin-

cipal, which is to be converted, and the results of the conversion.

Return Values

Upon successful completion this routine returns zero. Otherwise it returns an error value

describing the problem.

Error Conditions
ENOENT One or more entries in the Specs array specified a principal or cell

name that could not be found.

ENOCONNECT A problem with the security registry.

EINVAL Non-numeric principal id was specified.

See also
hpss_ConvertIdsToNames

Notes

The Specs array must contain NumEntries elements of type api_name_spec_t. Each array entry has

a Type field that determines how that element will be translated. If the element’s Type is

NAMESPEC_SKIP, then the Name and CellName fields will be ignored and the Id and CellId fields

will be set to undefined values. This is used to help ACL editors deal with ACL entry types, such

as the mask object, which do not contain any names.

If the element’s Type is set to NAMESPEC_CELL, the CellName field is translated into a cell id,

which is returned in the CellId field. In this case, the Name field will be ignored and the Id field will

be set to an undefined value. On the other hand, if Type is set to NAMESPEC_USER or

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-21
Release 4.2, Revision 1

NAMESPEC_GROUP, the function returns the UID or GID in the Id field as well as filling in the

CellId field.

If the element’s Name and/or CellName fields are strings or digits, the routine does not try to verify

that the principal and/or cell actually exist. Rather, it just returns the corresponding values in the

Id and CellId fields. This allows the caller to deal with principals and/or cells that no longer exist.

In this situation, the routine does not return ENOENT.

If at any point during the translation process, an array entry is found that cannot be translated, the

routine will return immediately. In this case, the Id and CellId fields of each Specs array entry should

be considered undefined, but the Type, Name, and CellName fields will remain unchanged from their

initial values. Therefore the caller may need to keep a copy of the Specs array if the id fields will be

needed again.

Chapter 2. Client API Functions

2-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.15. hpss_Create

Purpose

Create an HPSS file.

Synopsis
#include “hpss_api.h”

int
hpss_Create(

char *Path, /* IN */

mode_t Mode, /* IN */

hpss_cos_hints_t *HintsIn, /* IN */

hpss_cos_priorities_t *HintsPri, /* IN */

hpss_cos_hints_t *HintsOut); /* OUT */

Description

The hpss_Create function creates the specified file, if it does not already exist. The newly created

or previously existing file is not opened (see hpss_Open).

Parameters
Path Names the file to be opened or created.

Mode Specifies the file mode used for determining the mode for the

created file.

HintsIn Points to an hpss_cos_hints_t structure which provides allocation

hints to HPSS as to the expected structure or access of the file. This

argument may be a NULL pointer.

HintsPri Points to an hpss_cos_priorities_t structure which provides the

relative priorities associated with the fields contained in the

HintsIn structure. This arguement may be a NULL pointer.

HintsOut Points to an hpss_cos_hints_t structure which will contain the

values actually used when the file is created. This argument may

be a NULL pointer.

Return values

Upon successful completion, hpss_Create returns zero. Otherwise, hpss_Create returns a negative

value; the absolute value of which is equal to an errno value, defined below.

Error conditions
EACCES Search permission is denied on a component of the Path prefix or

the file does not exist and write permission is denied for the parent

directory of the file to be created.

EEXIST The named file exists.

EINVAL One or more values in the HintsIn parameter is invalid.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-23
Release 4.2, Revision 1

ENAMETOOLONG The length of the Path string exceeds the system-imposed path

name limit or a path name component exceeds the system-

imposed limit.

ENOSPC Resources could not be allocated for the new file.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Open, hpss_Umask.

Notes

This function differs from the POSIX creat in that no attempt is made to open the file and it behaves

as if the O_EXCL flag were set (see EEXIST, above).

Chapter 2. Client API Functions

2-24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.16. hpss_DeleteACL

Purpose

Removes entries from the Access Control List of a file.

Synopsis
#include "hpss_api.h"

int
hpss_DeleteACL(

char *Path, /* IN */

unsigned32 Options, /* IN */

ns_ACLConfArray_t *ACL); /* IN */

Description

The hpss_DeleteACL function removes the ACL entries specified by ACL from the file named by

Path.

Parameters
Path Names the file for which the ACL is being removed.

Options Bit vector used to specify what type of ACL is to be retrieved. One

of:

HPSS_ACL_OPTION_OBJ – return object's normal ACL.

HPSS_ACL_OPTION_IO – return the initial-object ACL. (only

valid for directory objects)

HPSS_ACL_OPTION_IC – return the initial-container ACL. (only

valid for directory objects)

ACL Points to the list of ACL entries to be removed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path or ACL parameter is a NULL pointer.

EINVAL Exactly one of the HPSS_ACL_OPTION_* bits must be set in the

Options bit vector to avoid receiving this error.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-25
Release 4.2, Revision 1

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

ESRCH A specified ACL entry did not match an existing ACL entry for the

file.

See also
hpss_GetACL, hpss_SetACL,hpss_UpdateACL.

Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API

library.

Chapter 2. Client API Functions

2-26 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.17. hpss_Fclear

Purpose

Clear part of a file.

Synopsis
#include "hpss_api.h"

int
hpss_Fclear(

int Fildes, /* IN */

u_signed64 Length); /* IN */

Description

The hpss_Fclear routine clears part of an open file, specified by Fildes, the current file offset and

Length. A hole will be created in the file covering the part of the file that was cleared, and its storage

resource may be freed accordingly.

Parameters
Fildes Specifies the file descriptor identifying the open file for which part

is to be cleared.

Length Specifies the number of bytes to be cleared.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for writing.

EBUSY The specified file descriptor is currently in use.

See also
hpss_FclearOffset, hpss_Truncate, hpss_Ftruncate.

Notes
None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-27
Release 4.2, Revision 1

2.1.18. hpss_FclearOffset

Purpose

Clear part of a file beginning at the specified offset.

Synopsis
#include "hpss_api.h"

int
hpss_FclearOffset(

int Fildes, /* IN */
u_signed64 Offset, /* IN */

u_signed64 Length); /* IN */

Description

The hpss_FclearOffset routine clears part of an open file, specified by Fildes, the current file Offset
and Length. A hole will be created in the file covering the part of the file that was cleared, and

storage resources may be freed accordingly.

Parameters
Fildes Specifies the file descriptor identifying the open file of the part to

clear.

Offset Specifies where to begin clearing the file.

Length Specifies the number of bytes to be cleared.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value defined below.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for writing.

EBUSY The specified file descriptor is currently in use.

EINVAL The Length or Offset argument is invalid.

See also
hpss_Fclear.

 Notes
None.

Chapter 2. Client API Functions

2-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.19. hpss_FileGetAttributes

Purpose

Get attributes for a file.

Synopsis
#include “hpss_api.h”

int
hpss_FileGetAttributes(

char *Path, /* IN */

hpss_fileattr_t *AttrOut); /* OUT */

Description

The hpss_FileGetAttributes function returns the file attribute structure for the file named by Path.

The attributes are returned in the structure pointed to by AttrOut.

Parameters
Path Points to the path name of the file being queried.

AttrOut Points to the structure that will hold the file attributes.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which indicates the specific error.

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path or AttrOut parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_FileSetAttributes, hpss_Stat, hpss_Fstat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-29
Release 4.2, Revision 1

2.1.20. hpss_FileGetXAttributes

Purpose

Get extended attributes for a file.

Synopsis

#include “hpss_api.h”

int
hpss_FileGetXAttributes(

char *Path, /* IN */

unsigned32 Flags, /* IN */

unsigned32 StorageLevel, /* IN */

hpss_xfileattr_t *AttrOut); /* OUT */

Description

The hpss_FileGetXAttributes function returns the file extended attribute structure for the file

named by Path. The file may currently be open, but is not required to be open. The attributes are

returned in the structure pointed to by AttrsOut.

Parameters
Path Points to the pathname of the file being queried.

Flags Specifies the flag that indicates the behavior of the call. The accept-

able values are:

API_GET_STATS_FOR_LEVEL - Returns bitfile attributes at the

storage level specified by the StorageLevel argument.

API_GET_STATS_FOR_1STLEVEL - Returns bitfile attributes at

the first storage level whether or not it contains bitfile data.

API_GET_STATS_FOR_OPTIMIZE - Returns only StripeWidth and

OptimumAccessSize for storage level zero.

API_GET_STATS_ALL_LEVELS - Returns bitfile attributes across

all storage class levels.

StorageLevel Specifies the specific storage level to query when the

API_GET_STATS_FOR_LEVEL flag is used.

AttrOut Points to the structure that will hold the file attributes.

Return values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned;

the absolute value of that returned indicates the specific error.

Chapter 2. Client API Functions

2-30 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path or AttrOut parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system imposed limit,

or a component of the pathname exceeds the system imposed

limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the path prefix is not a directory.

See also

hpss_FileSetAttributes, hpss_Stat, hpss_Fstat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

This call allocates memory for the returned physical volume conformant array. After the successful

completion of this call, the memory should be freed using code similar to the example below.

for(i=0;i<HPSS_MAX_STORAGE_LEVELS;i++)
{
 for(j=0;j<AttrOut.BFSAttr.SCAttrib[i].NumberOfVVs;j++)
 {
 if (AttrOut.BFSAttr.SCAttrib[i].VVAttrib[j].PVList != NULL)
 {
 free(AttrOut.BFSAttr.SCAttrib[i].VVAttrib[j].PVList);
 }
 }
}

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-31
Release 4.2, Revision 1

2.1.21. hpss_FileSetAttributes

Purpose

Alter file attribute values.

Synopsis
#include “hpss_api.h”

int
hpss_FileSetAttributes(

char *Path, /* IN */

u_signed64 NSSelFlags, /* IN */

u_signed64 BFSSelFlags, /* IN */

hpss_fileattr_t *AttrIn, /* IN */

hpss_fileattr_t *AttrOut); /* OUT */

Description

The hpss_FileSetAttributes function changes file attributes for the file named by Path, based on

the attributes in the structure pointed to by AttrIn. The updated file attributes after the completion

of the request are returned in the structure pointed to by AttrOut.

Parameters
Path Points to the name of the file for which attribute values are to be

changed.

NSSelFlags Specifies the bitmask which indicates which attributes are to be set

in the Name Server attribute.

ATTRINDEX_ACCOUNT

ATTRINDEX_ACL_MASK_PERMS

ATTRINDEX_BIT_FILE_ID

ATTRINDEX_CLASS_OF_SERVICE

ATTRINDEX_COMMENT

ATTRINDEX_COMPOSITE_PERMS

ATTRINDEX_EXPIRATION_DATE

ATTRINDEX_FILE_SIZE

ATTRINDEX_FOREIGN_PERMS

ATTRINDEX_GID

ATTRINDEX_GROUP_PERMS

ATTRINDEX_LINK_COUNT

ATTRINDEX_MAX_SEC_LABEL

ATTRINDEX_OTHER_PERMS

ATTRINDEX_SET_GID_ON_EXE

ATTRINDEX_SET_STICKY_BIT

ATTRINDEX_SET_UID_ON_EXE

ATTRINDEX_TIME_LAST_BILLED

ATTRINDEX_TIME_LAST_READ

ATTRINDEX_TIME_LAST_WRITTEN

ATTRINDEX_TIME_OF_METADATA_UPDATE

ATTRINDEX_TYPE

ATTRINDEX_UID

ATTRINDEX_UNAUTH_PERMS

Chapter 2. Client API Functions

2-32 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ATTRINDEX_USER_PERMS

BFSSelFlags Bitmask which indicates which attributes are to be set in the Bitfile

Server attributes:

BFS_SET_CURRENT_POSITION

BFS_SET_DATA_LEN

BFS_SET_CREATE_TIME

BFS_SET_MODIFY_TIME

BFS_SET_WRITE_TIME

BFS_SET_READ_TIME

BFS_SET_OWNER_REC

BFS_SET_COS_ID

BFS_SET_ACCT

BFS_SET_SECURITY

BFS_SET_REGISTER_BITMAP

AttrIn Points to a structure containing the new attribute values.

AttrOut Points to a structure that will contain the file attribute values after

completion of this request.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which indicates the specific error.

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path, AttrIn or AttrOut parameter is a NULL pointer.

EINVAL An attribute value or selection flag is invalid.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOSPC Resources could not be allocated to satisfy the request.

ENOTDIR A component of the Path prefix is not a directory.

EOPNOTSUPP The requested change is not supported.

EPERM The client does not have the appropriate privileges to change the

file's attributes.

See also

hpss_FileGetAttributes, hpss_Chown, hpss_Chmod, hpss_Utime.

Notes

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-33
Release 4.2, Revision 1

None.

Chapter 2. Client API Functions

2-34 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.22. hpss_FilesetCreate

Purpose

Create an HPSS fileset.

Synopsis

#include “hpss_api.h”

int
hpss_FilesetCreate(

uuid_t *NameServer, /* IN */

ns_FilesetAttrBits_t FilesetAttrBits, /* IN */

ns_FilesetAttrs_t *FilesetAttrs, /* IN */

ns_AttrBits_t ObjectAttrBits, /* IN */

ns_Attrs_t *ObjectAttrs, /* IN */

ns_FilesetAttrBits_t RetFilesetAttrBits, /* IN */

ns_AttrBits_t RetObjectAttrBits, /* IN */

ns_FilesetAttrs_t *RetFilesetAttrs, /* OUT */

ns_Attrs_t *RetObjectAttrs, /* OUT */

ns_ObjHandle_t *FilesetHandle); /* OUT */

Description

The hpss_FilesetCreate function is called to create a new HPSS fileset. If a NULL NameServer

UUID parameter is specified the root Name Server will be used. A handle to the newly created

fileset is returned in the memory pointed to by FilesetHandle.

 Parameters
NameServer Points to the Name Server uuid to be used for the create.

FilesetAttrBits Specifies which fileset attributes are to be set.

FilesetAttrs Points to the fileset attributes to be set.

ObjectAttrBits Specifies which object attributes are to be set.

ObjectAttrs Points to the object attributes to be set.

RetFilesetAttrBits Specifies which fileset attributes were set.

RetObjectAttrBits, Specifies which object attributes were set.

RetFilesetAttrs Points to the fileset attributes that were set.

RetObjectAttrs Points to the object attributes that were set.

FilesetHandle Points to the fileset handle created.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-35
Release 4.2, Revision 1

Error conditions
EACCES The user is not the root user or a trusted user.

EFAULT The FilesetHandle, FilesetAttrs, ObjectAttrs, RetFilesetAttrs or the

RetObjectAttrs parameter are NULL pointers.

EINVAL The file attributes or attributes bits are invalid.

EEXIST A file already exist with the specified identifier.

See also

hpss_FilesetDelete, hpss_FilesetGetAttribute, hpss_FilesetSetAttributes.

Notes

None.

Chapter 2. Client API Functions

2-36 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.23. hpss_FilesetDelete

Purpose

Delete and HPSS fileset.

Synopsis

#include “hpss_api.h”

int
hpss_FilesetDelete(

char *Name, /* IN */

u_signed64 *FilesetId, /* IN */

ns_ObjHandle_t *FilesetHandle); /* IN */

Description

The hpss_FilesetDelete function is called to delete an existing HPSS fileset by either name, id or

handle. A filesets can be identified by either a name, an ID, or the handle to its root. Only one type

of identifier can be specified. The other values must be NULL pointers.

Parameters
Name Specifies the name of the fileset to be deleted.

FilesetId Specifies the id of the fileset to be deleted.

FilesetHandle Specifies the handle of the fileset to be deleted.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
EACCES The user is not the root user or a trusted user.

ENOENT The specified fileset does not exist.

EINVAL More that one type of fileset identifier was specified.

EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL

pointers.

See also

hpss_FilesetCreate, hpss_FilesetGetAttribute, hpss_FilesetSetAttributes.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-37
Release 4.2, Revision 1

2.1.24. hpss_FilesetGetAttributes

Purpose

Get attributes for an HPSS fileset.

Synopsis

#include “hpss_api.h”

int

hpss_FileGetSetAttributes(
char *FilesetName, /* IN */

u_signed64 *FilesetId, /* IN */

ns_ObjHandle_t *FilesetHandle, /* IN */

uuid_t *NameServerUUID, /* IN */

ns_FilesetAttrBits_t FilesetAttrBits, /* IN */

ns_FilesetAttrs_t *FilesetAttrs); /* OUT */

Description

The hpss_FilesetGetAttributes function is called to retrieve the attribute for a specified HPSS file

set by supplying either a name, id or handle. Only one type of identifier can be specified. The other

values must be NULL pointers. If NULL is specified for the Name Server UUID, then the local

Name Server will be contacted; otherwise the specified Name Server will be contacted to retrieve

the fileset information.

Parameters
Name Specifies the name of the fileset to retrieve attributes for.

FilesetId Specifies the id of the fileset to retrieve attributes for.

FilesetHandle Specifies the handle of the fileset to retrieve attributes for.

NameServerUUID The Name Server to contact managing the fileset information.

FilesetAttrBits Specifies the fileset attribute bits that specify the fileset attributes

to retrieve.

FilesetAttrs Points to the returned fileset attributes.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
EACCES The user is not the root user or a trusted user.

ENOENT The specified fileset does not exist.

EINVAL More that one type of fileset identifier was specified or invalid file

set attribute bits were specified.

Chapter 2. Client API Functions

2-38 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL

pointers.

See also

hpss_FilesetSetAttributes, hpss_FilesetCreate, hpss_FilesetDelete.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-39
Release 4.2, Revision 1

2.1.25. hpss_FilesetListAll

Purpose

Obtain a list of all the HPSS filesets.

Synopsis

#include “hpss_api.h”

int
hpss_FilesetListAll(

u_signed64 OffsetIn, /* IN */

unsigned32 Entries, /* IN */

unsigned32 *End, /* OUT */

u_signed64 *OffsetOut, /* OUT */

hpss_global_fsent_t *FSentPtr); /* OUT */

Description

The hpss_FilesetListAll function is called to get the global fileset attributes for all the filesets in the

HPSS site.

Parameters
OffsetIn Specifies the offset of the first fileset entry to be read. This should

be set to zero to start before the first call, and subsequent entries

can be read by provided the value returned in OffsetOut.

Entries Specifies the size of the entry buffer, FSentPtr, in

hpss_global_fsent_t entries.

End Points to an area to contain indication of whether the last fileset

entry is included in the returned list.

OffsetOut Points to area to contain offset of the next fileset entry following

those returned by this call.

FSentPtr Points to area to contain returned fileset entries.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
EFAULT The End, OffsetOut or DirenPtr parameter is a NULL pointer.

See also

hpss_FilesetCreate.

Notes

This API is used by setting OffsetIn to the starting point for the lookup (usually zero). ‘Entries’ is

Chapter 2. Client API Functions

2-40 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

the number of filesets entries for which you have allocate space. OffsetOut is the point that the

lookup as at when it accumulated the specified number of entries. This is typically used to specify

the new starting offset (OffsetIn). End is a flag indicating that the end of the list was encountered

before the all the entries were accumulated.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-41
Release 4.2, Revision 1

2.1.26. hpss_FilesetSetAttributes

 Purpose

Set attributes for an HPSS fileset.

Synopsis

#include “hpss_api.h”

int
hpss_FilesetSetAttributes(

char *Name, /* IN */

u_signed64 *FilesetId, /* IN */

ns_ObjHandle_t *FilesetHandle, /* IN */

ns_FilesetAttrBits_t FilesetAttrBitsIn, /* IN */

ns_FilesetAttrs_t *FilesetAttrsIn, /* IN */

ns_FilesetAttrBits_t FilesetAttrBitsOut, /* IN */

ns_FilesetAttrs_t *FilesetAttrsOut); /* OUT */

Description

The hpss_FilesetSetAttributes function is called to set the attribute for a specified Name Server file

set by either name, id or handle.

Parameters
Name Specifies the name of the fileset to retrieve attributes for.

FilesetId Specifies the id of the fileset to retrieve attributes for.

FilesetHandle Specifies the handle of the fileset to retrieve attributes for.

FilesetAttrBits Specifies the fileset attribute bits that specify the fileset attribute

values that are to be set.

FilesetAttrs Points to the fileset attribute values to be set.

FilesetAttrBitsOut Specifies the fileset attribute bits that specify the fileset attribute

values that are to be returned.

FilesetAttrsOut Points to the returned fileset attribute values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
EACCES The user is not the root user or a trusted user.

ENOENT The specified fileset does not exist.

EINVAL More that one type of fileset identifier was specified or invalid file

set attributes (or attribute bits) were specified.

Chapter 2. Client API Functions

2-42 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL

pointers.

See also

hpss_FilesetGetAttributes, hpss_FilesetCreate, hpss_FilesetDelete.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-43
Release 4.2, Revision 1

2.1.27. hpss_Fpreallocate

Purpose

Set the length of a file and preallocate storage segments

Synopsis

#include "hpss_api.h"

int
hpss_Fpreallocate(

int Fildes, /* IN */

u_signed64 Length); /* IN */

Description

The hpss_Fpreallocate routine sets the length of an open file, specified by the Fildes argument. The

Length parameter specifies the requested length. It must be greater than the current size of the file.

Additional storage space is preallocated for the file and a hole is created in the file from the current

size to the requested length.

Parameters
Fildes Speficies file descriptor identifying file to be queried.

Length Specifies the desired length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value defined below.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for writing.

EBUSY The specified file descriptor is currently in use.

ENOSPC The requested storage resources could not be allocated.

EINVAL There is not a disk storage class at the top of the storage hierarchy.

See also

hpss_Preallocate, hpss_Ftruncate, hpss_Truncate, hpss_Fclear, hpss_FileSetAttributes.

Notes

There must be a disk storage class at the top of the storage hierarchy in which the file resides.

Chapter 2. Client API Functions

2-44 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.28. hpss_Fstat

Purpose

Get file status (POSIX).

Synopsis

#include "hpss_api.h"
int

hpss_Fstat(
int Fildes, /* IN */

struct stat *Buf); /* OUT */

Description

The hpss_Fstat function obtains information about the open file identified by Fildes and returns it

in the structure pointed to by Buf. Refer to POSIX.1 for more detailed information.

Parameters
Fildes Specifies the file descriptor identifying the file to be queried.

Buf Points to a stat structure that will contain the information for the

file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions
EBADF The file descriptor supplied does not correspond to an open file.

EFAULT The Buf parameter is a NULL pointer.

See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,

hpss_Stat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-45
Release 4.2, Revision 1

2.1.29. hpss_Ftruncate

Purpose

Set the length of a file.

Synopsis

#include "hpss_api.h"

int
hpss_Ftruncate(

int Fildes, /* IN */

u_signed64 Length); /* IN */

Description

The hpss_Ftruncate routine sets the length of an open file, specified by the Fildes argument. If the

new file length is less than the current length, the space allocated beyond the new length will be

freed. If the new length is greater than the current length, a hole is created in the file.

Parameters
Fildes Specifies the file descriptor identifying the open file for which the

length is to be set.

Length Specifies the new length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for writing.

EBUSY The specified file descriptor is currently in use.

See also

hpss_Truncate, hpss_Fclear, hpss_FileSetAttributes.

Notes

None.

Chapter 2. Client API Functions

2-46 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.30. hpss_GetAcct

Purpose

Query the default and current account codes.

Synopsis

#include "hpss_api.h"

int
hpss_GetAcct(

acct_rec_t *RetDefAcct, /* OUT */

acct_rec_t *RetCurAcct); /* OUT */

Description

The hpss_GetAcct routine returns the default and current account codes for the calling thread. If

the value returned in RetDefAcct is HPSS_ACCT_USE_UID (currently defined as -1), this indicates

that the client is configured for Unix-style accounting.

Parameters
RetDefAcct Points to an area that will contain the default account code.

RetCurAcct Points to an area that will contain the current account code.

Return values

Upon successful completion, hpss_GetAcct returns zero. Otherwise, hpss_GetAcct returns a

negative value; the absolute value of which indicates the specific error.

Error conditions
EFAULT The RetDefAcct or RetCurAcct parameter is a NULL pointer.

See also

hpss_AcctCodeToName, hpss_AcctNameToCode , hpss_Chacct, hpss_ChacctByName,
hpss_GetAcctName, hpss_SetAcct, hpss_SetAcctByName

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-47
Release 4.2, Revision 1

2.1.31. hpss_GetAcctName

Purpose

Retrieve the current account name.

Synopsis
#include "hpss_api.h"

int

hpss_GetAcctName(

char *AcctName) /* OUT */

Description

The hpss_GetAcctName routine retrieves the name of the current session account for this thread.

Since each site contacted by each thread in the Client API can have its own session account name,

the account name for the site managing the current working directory is returned.

Parameters
AcctName The name of the thread's current session account.

Return Values

Upon successful completion, hpss_GetAcctName returns 0. Otherwise, hpss_GetAcctName

returns a negative value; the absolute value of that returned indicates the specific error.

Error Conditions
EINVAL The client is configured for Unix-style accounting, and therefore

the account name has no relevance. Or, a NULL AcctName was

provided.

See also
hpss_GetAcct, hpss_Chacct, hpss_SetAcct, hpss_SetAcctByName, hpss_ChacctByName.

Notes

None.

Chapter 2. Client API Functions

2-48 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.32. hpss_GetACL

Purpose

Query the Access Control List of a file.

Synopsis

#include "hpss_api.h"

int
hpss_GetACL(

char *Path, /* IN */

unsigned32 Options, /* IN */

ns_ACLConfArray_t **ACL); /* OUT */

Description

The hpss_GetACL function returns the access control list information for the named file.

Parameters
Path Names the file for which the ACL is being queried.

Options Bit vector used to specify what type of ACL is to be retrieved. One

of:

HPSS_ACL_OPTION_OBJ – return object's normal ACL.

HPSS_ACL_OPTION_IO – return the initial-object ACL. (only

valid for directory objects)

HPSS_ACL_OPTION_IC – return the initial-container ACL. (only

valid for directory objects)

ACL Points to the beginning of the returned list of ACL entries.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below:

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path or ACL parameter is a NULL pointer.

EINVAL Exactly one of the HPSS_ACL_OPTION_* bits must be set in the

Options bit vector to avoid receiving this error.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-49
Release 4.2, Revision 1

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

hpss_SetACL, hpss_DeleteACL, hpss_UpdateACL.

Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API

library.

The use is responsible for freeing the ACL return parameter.

Chapter 2. Client API Functions

2-50 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.33. hpss_GetBFSStats

Purpose

Query Bitfile Server statistics.

Synopsis

#include "hpss_api.h"

int
hpss_GetBFSStats(

bfs_stats_t *StatsOut); /* OUT */

Description

The hpss_GetBFSStats routine returns the number of stages, migrations, purges, and deletes.

Parameters
StatsOut Points to an area that will contain the current BFS statistics values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The StatsOut parameter is a NULL pointer.

See also

hpss_SetBFSStats.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-51
Release 4.2, Revision 1

2.1.34. hpss_GetConfiguration

Purpose

Query the current Client API configuration information.

Synopsis

#include "hpss_api.h"

long
hpss_GetConfiguration(

api_config_t *ConfigOut); /* OUT */

Description

The hpss_GetConfiguration routine returns the current configuration values for the Client API.

Parameters
ConfigOut Points to an area that will contain the current configuration

attribute value settings.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The ConfigOut parameter is a NULL pointer.

See also

hpss_SetConfiguration.

Notes

None.

Chapter 2. Client API Functions

2-52 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.35. hpss_Getcwd

Purpose

Get current working directory.

Synopsis

#include "hpss_api.h"

int
hpss_Getcwd(

char *Buf, /* OUT */

size_t Size); /* IN */

Description

The hpss_Getcwd function copies an absolute path name of the current working directory to the

character array pointed to by Buf. The Size argument is the size in bytes of the array pointed to by

Buf.

Parameters
Buf Points to an array to contain the current working directory path

name.

Size Specifies the size, in bytes, of the array pointed to by Buf.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 getcwd.

Error conditions
EACCES Read or Search permission is denied on a component of the path

name.

EFAULT The Buf parameter is a NULL pointer.

EINVAL The Size argument is zero.

ERANGE The Size argument is greater than zero, but smaller than the length

of the path name plus 1.

See also

hpss_Chdir, hpss_Chroot.

Notes

hpss_Getcwd is altered from POSIX.1 getcwd in that it returns an integer value to be more consis-

tent with other HPSS calls.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-53
Release 4.2, Revision 1

2.1.36. hpss_GetListAttrs

Purpose

Get attributes for a file, suitable for a directory listing.

Synopsis

#include "hpss_api.h"

int
hpss_GetListAttrs(

char *Path, /* IN */

ns_Attrs_t *AttrOut); /* OUT */

Description

The hpss_GetListAttrs function returns the attributes associated with the file named by Path. The

attributes include information suitable for a long directory listing, including 64-bit file length and

Class of Service.

Parameters
Path Points to the path name of the file being queried.

AttrOut Points to a stat structure that will contain the attribute information

for the file.

Return values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned,

the absolute value of which indicates the specific error.

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path or AttrOut parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,

hpss_Stat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

None.

Chapter 2. Client API Functions

2-54 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.37. hpss_JunctionCreate

Purpose

Create a junction to an HPSS fileset or directory.

Synopsis

#include "hpss_api.h"

int

hpss_JunctionCreate(
char *Path, /* IN */

ns_ObjHandle_t *SourceHandle, /* IN */

ns_ObjHandle_t *JunctionHandle); /* OUT */

Description

The hpss_JunctionCreate function is called to create a HPSS junction to the specified directory or

fileset handle.

Parameters
Path Specifies path name of the new junction.

SourceHandle Points to the directory or fileset handle that is used for the source

of the new junction.

JunctionHandle Specifies the returned handle for the newly created junction.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
EFAULT Either the Path or SourceHandle parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system imposed limit,

or a component of the pathname exceeds the system imposed

limit.

ENOENT The Path argument points to an empty string.

EEXISTT The named path already exists in the HPSS name space.

EACCES The requesting client is not the root user or a trusted user with

write permissions.

EINVAL The SourceHandle parameter doesn’t point to a directory handle.

See also

hpss_FilesetCreate, hpss_JunctionDelete.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-55
Release 4.2, Revision 1

Notes

None.

Chapter 2. Client API Functions

2-56 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.38. hpss_JunctionDelete

Purpose

Delete a junction.

Synopsis

#include "hpss_api.h"

int
hpss_JunctionDelete(

char *Path); /* IN */

Description

The hpss_JunctionDelete is called to delete the junction specified by the Path input parameter.

Parameters
Path Specifies the name of the junction to be deleted.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value.

Error conditions
ENOENT The Path parameter is an empty string or doesn’t refer to an

existing object

EFAULT The Path parameter is NULL.

EINVAL The Path parameter doesn’t refer to a junction.

EACCES The requesting client is not the root user or a trusted user with

write permissions.

See also

hpss_JunctionCreate, hpss_JunctionCreateHandle.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-57
Release 4.2, Revision 1

2.1.39. hpss_Link

Purpose

Create a hard link to an existing HPSS file.

Synopsis

#include "hpss_api.h"

int
hpss_Link(

char *Existing, /* IN */

char *New); /* IN */

Description

The hpss_Link routine creates a hard link to an existing file (hard links to directories are not

currently supported), given the path name of the existing file, Existing, and the path name of the

new link, New.

Parameters
Existing Specifies the path name of the existing file to which the link is to

be created.

New Specifies the path name of the new link.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the parent directory of the new link.

EEXIST The object identified by New already exists.

EFAULT The Existing or New parameter is a NULL pointer.

EPERM The object specified by Existing is a directory.

EMLINK The number of links to the file named by Existing would exceed

the system-imposed limit.

ENAMETOOLONG The length of the Existing or New argument exceeds the system-

imposed path name limit or a path name component exceeds the

system-imposed limit.

ENOENT No entry exists for the specified file.

ENOTDIR A component of the path prefix is not a directory.

See also

Chapter 2. Client API Functions

2-58 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_Symlink, hpss_Unlink.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-59
Release 4.2, Revision 1

2.1.40. hpss_LoadThreadState

Purpose

Updates the user credentials and file/directory creation mask for the current thread's Client API

state.

Synopsis

#include "hpss_api.h"

int
hpss_LoadThreadState(

uid_t UserID, /* IN */

mode_t Umask); /* IN */

Description

The hpss_LoadThreadState routine updates the user credentials and file/directory creation mask

found in the current thread's Client API state.

Parameters
UserID Specifies the user ID for the user whose credentials are to be

loaded.

Umask Specifies the new file/directory creation mask.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also

hpss_XLoadThreadState, hpss_LoadDefaultThreadState

Notes

None.

Chapter 2. Client API Functions

2-60 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.41. hpss_LoadDefaultThreadState

Purpose

Special interface to allow well behaved clients to manipulate the global thread state so that all

threads will use the new state.

Synopsis

#include "hpss_api.h"

int
hpss_LoadDefaultThreadState(

uid_t UserID, /* IN */

mode_t Umask, /* IN */

char *ClientFullName); /* IN */

Description

The hpss_LoadDefaultThreadState routine updates the global thread state so that all threads will

use the new state. After this call, hpss_LoadThreadState routine is effectively disabled because for

each new API the credentials are reloaded from the global thread state.

Parameters
UserID Specifies the user ID for the user whose credentials are to be

loaded.

Umask Specifies the new file/directory creation mask.

ClientFullName Specifies the client full quailified name in the following format /

.../{dce cell name}/username (e.g., /.../

dce.sandia.gov/jtjoker)

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also

hpss_LoadThreadState, hpss_XLoadThreadState

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-61
Release 4.2, Revision 1

2.1.42. hpss_Lseek

Purpose

Set the current file offset for an open file, given a 32-bit value.

Synopsis

#include <unistd.h>
#include "hpss_api.h"

off_t
hpss_Lseek(

int Fildes, /* IN */

off_t Offset, /* IN */

int Whence); /* IN */

Description

The hpss_Lseek function sets the file offset for the open file handle, Fildes. Refer to POSIX.1 for

more detailed information.

Parameters
Fildes Specifies the open file handle for which the file offset is to be set.

Offset Specifies the number of bytes to be used in calculating the new file

offset - dependent on the value of Whence as to the final effect on

the new file offset.

Whence Specifies how to interpret the Offset parameter in setting the file

pointer associated with the Fildes parameter. Values for the

Whence parameter are as follows:

SEEK_SET - file offset set to Offset.

SEEK_CUR - file offset set to current offset plus Offset.

SEEK_END - file offset set to current end of file plus Offset.

Return values

Upon successful completion, hpss_Lseek returns a nonnegative value representing the resulting

offset as measured in bytes from the beginning the file. Otherwise, hpss_Lseek returns a negative

value; the absolute value of which is equal to an errno value set by POSIX.1 lseek.

Error conditions
EBADF The specified file descriptor does not refer to an open file.

EBUSY The file is currently in use by another client thread.

EFBIG Could not represent the resulting offset in the return value.

EINVAL The Whence parameter is invalid or the resulting offset would be

invalid.

Chapter 2. Client API Functions

2-62 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ENOSPC Resources could not be allocated to satisfy the request.

See also

hpss_Read, hpss_Write, hpss_SetFileOffset.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-63
Release 4.2, Revision 1

2.1.43. hpss_Lstat

Purpose

Get file status (POSIX), returning status about a symbolic link if the named file is a symbolic link.

Synopsis

#include "hpss_api.h"

int
hpss_Lstat(

char *Path, /* IN */

struct stat *Buf); /* OUT */

Description

The hpss_Lstat function obtains information about the file named by Path and returns it in the

structure pointed to by Buf. Refer to POSIX.1 for more detailed information. This function differs

from hpss_Stat, however, in that if the named file is a symbolic link, information is returned about

the link itself, not about the file to which the link points.

Parameters
Path Points to the path name of the file being queried.

Buf Points to a stat structure that will contain the information for the

file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path or Buf parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,

hpss_Stat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

Chapter 2. Client API Functions

2-64 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-65
Release 4.2, Revision 1

2.1.44. hpss_Migrate

Purpose

Migrate a file from a specified level in the storage hierarchy.

Synopsis

#include "hpss_api.h"

int
hpss_Migrate(

int Fildes, /* IN */

unsigned32 SrcLevel, /* IN */

unsigned32 Flags, /* IN */

u_signed64 *RetBytesMigrated);/* OUT */

Description

The hpss_Migrate routine migrates an open file from a level in the storage hierarchy, specified by

SrcLevel. The Flags argument is used to control behavior of the request.

Parameters
Fildes Specifies the file descriptor corresponding to the file to be

migrated.

SrcLevel Identifies the level in the storage hierarchy from which the data is

to be migrated.

Flags Controls the behavior of the migrate request. Anticipated values

include:

BFS_MIGRATE_ALL - migrate entire file (required).

RetBytesMigrated Points to an area to contain the number of bytes migrated.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The supplied file descriptor does not correspond to a file opened

for writing.

EBUSY The specified file descriptor is in use.

EFAULT The RetBytesMigrated paramter is a NULL pointer.

EINVAL The Flags argument is invalid.

EPERM The client does not have the appropriate privileges to issue explicit

file migration requests.

Chapter 2. Client API Functions

2-66 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See also

hpss_Purge, hpss_Stage.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-67
Release 4.2, Revision 1

2.1.45. hpss_Mkdir

Purpose

Create a directory.

Synopsis

#include "hpss_api.h"

int
hpss_Mkdir(

char *Path, /* IN */

mode_t Mode); /* IN */

Description

The hpss_Mkdir function creates a new directory with the name Path. The file permission bits of

the new directory are initialized by Mode and modified by the file creation mask of the thread.

Parameters
Path Specifies the path name to be used for the newly created directory.

Mode Specifies permission bits to be used in setting the mode of the new

directory.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 mkdir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the parent directory of the directory

to be created.

EEXIST The named file exists.

EFAULT The Path parameter is a NULL pointer.

EMLINK The link count of the parent directory would exceed the maximum

allowed number of links.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the pathname exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

Chapter 2. Client API Functions

2-68 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_Umask, hpss_Rmdir.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-69
Release 4.2, Revision 1

2.1.46. hpss_Open

Purpose

Optionally create and open an HPSS file.

Synopsis

#include <fcntl.h>

#include “hpss_api.h”

int
hpss_Open(

char *Path, /* IN */

int Oflag, /* IN */

mode_t Mode, /* IN */

hpss_cos_hints_t *HintsIn, /* IN */

hpss_cos_priorities_t *HintsPri, /* IN */

hpss_cos_hints_t *HintsOut); /* OUT */

Description

The hpss_Open function establishes the connection between a file, named by the Path argument,

and a file handle. If O_CREAT is specified in Oflag and the file does not exist, an attempt will be

made to create the file.

Parameters
Path Names the file to be opened or created.

Oflag Specifies the file status and file access modes to be assigned.

Applicable values given below may be OR'ed together. Refer to

POSIX.1 for specific behavior.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_EXCL

O_TRUNC

Mode Specifies the file mode for a file that is created as a result of

O_CREAT.

HintsIn Points to an hpss_cos_hints_t structure which provides allocation

hints to HPSS as to the expected structure or access of the file. This

argument may be a NULL pointer. This parameter is only used

during file creation.

HintsPri Points to an hpss_cos_priorities_t structure which provides the

relative priorities associated with the fields contained in the

HintsIn structure. This parameter is only used during file creation,

and may be a NULL pointer.

Chapter 2. Client API Functions

2-70 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

HintsOut Points to an hpss_cos_hints_t structure which will contain the

values actually used when the file is created. This argument may

be a NULL pointer. This parameter is only used during file

creation.

Return values

Upon successful completion, hpss_Open returns a nonnegative value that is the newly allocated

file handle. Otherwise, hpss_Open returns a negative value; the absolute value of which is equal

to an errno value set by POSIX.1 open.

Error conditions
EACCES One of the following conditions occurred:

Search permission is denied on a component of the path prefix.

The file exists and the permissions specified by Oflag are denied.

The file does not exist and write permission is denied for the

parent directory of the file to be created.

O_TRUNC is specified and write permission is denied.

EEXIST O_CREAT and O_EXCL are set and the named file exists.

EFAULT The Path parameter is a NULL pointer.

EINPROGRESS The file is currently being staged. The open should be retried at a

later time.

EINVAL Oflag is not valid, or one or more values input in the HintsIn
parameter is invalid.

EISDIR The named file is a directory. Note that opening directories via

hpss_Open is not supported in any mode.

EMFILE The client open file table is already full.

ENFILE Too many files are open in the system.

ENAMETOOLONG The length of the Path string exceeds the system-imposed path

name limit or a path name component exceeds the system-

imposed limit.

ENOENT The named file does not exist and the O_CREAT flag was not spec-

ified, or the Path argument points to an empty string.

ENOSPC Resources could not be allocated for the new file.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Close, hpss_Umask, hpss_OpenBitfile, hpss_Create, hpss_ReopenBitfile.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-71
Release 4.2, Revision 1

Notes

Note that opening directories with hpss_Open is not supported.

Chapter 2. Client API Functions

2-72 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.47. hpss_OpenBitfile

Purpose

Open an HPSS file, specified by bitfile ID.

Synopsis

#include "hpss_api.h"

int
hpss_OpenBitfile(

hpssoid_t *BitFileID, /* IN */

int OFlag, /* IN */

hsec_UserCred_t *Ucred, /* IN */

gss_token_t *AuthzTicket); /* IN */

Description

The hpss_OpenBitfile routine attempts to open the bitfile identified by BitFileID. Note that this

routine cannot be used to create a bitfile; rather, hpss_Open must be used for this purpose.

Parameters
BitFileID Points to bitfile identifier. The BitfileID is usually obtained using

hpss_FileGetAttributes.

Oflags Specifies file status and file access modes to be assigned. Appli-

cable values given below may be OR'ed together. Refer to POSIX.1

for specific behavior.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_TRUNC

Ucred Points to client's user credentials.

AuthzTicket Points to client's authorization for this file.

Return values

Upon successful completion, a nonnegative file descriptor is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES The client does not have permission for the requested file access.

EFAULT The BitFileID or AuthzTicket parameter is a NULL pointer.

EINPROGRESS The file is currently being staged. The open should be retried at a

later time.

EINVAL Oflag is not valid.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-73
Release 4.2, Revision 1

EMFILE The client file table is already full.

ENFILE Too many files are already open in the system.

ENOENT No entry exists for the specified bitfile ID.

See also

hpss_Open, hpss_ReopenBitfile, hpss_Close.

Notes

The user cannot generate a valid Authorization Ticket. Authorization Tickets are typically used by

authorized clients. Unauthorized clients should pass a zero value for AuthzTicket.

Chapter 2. Client API Functions

2-74 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.48. hpss_Opendir

Purpose

Open an HPSS directory.

Synopsis

#include "hpss_api.h"

int
hpss_Opendir(

char *DirName); /* IN */

Description

The hpss_Opendir function opens a directory stream corresponding to the directory named by

DirName. The directory stream is positioned at the first entry in the directory.

Parameters
DirName Specifies the path name of the directory to be opened.

Return values

Upon successful completion, hpss_Opendir returns a nonnegative value that is the newly allo-

cated directory stream handle. Otherwise, hpss_Opendir returns a negative value; the absolute

value of which is equal to an errno value set by POSIX.1 opendir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

read permission is denied on the directory itself.

EFAULT The DirName parameter is a NULL pointer.

EMFILE The open file table is already full.

ENAMETOOLONG The length of the DirName argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the DirName argument points to

an empty string.

ENOTDIR A component of DirName is not a directory.

See also

hpss_Readdir, hpss_Rewinddir, hpss_Closedir.

Notes

The return value is changed from POSIX, primarily to make handling open directories and files in

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-75
Release 4.2, Revision 1

the client API consistent.

Chapter 2. Client API Functions

2-76 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.49. hpss_Purge

Purpose

Purge a piece of a file from a specified level in the storage hierarchy.

Synopsis

#include "hpss_api.h"

int
hpss_Purge(

int Fildes, /* IN */

u_signed64 Offset, /* IN */

u_signed64 Length, /* IN */

unsigned32 StorageLevel, /* IN */

unsigned32 Flags, /* IN */

u_signed64 *RetBytesPurged); /* OUT */

Description

The hpss_Purge routine purges part of an open file, specified by Fildes, Offset and Length from a

level in the storage hierarchy, specified by StorageLevel. The Flags argument is used to control

behavior of the request.

Parameters
Fildes Specifies the file descriptor corresponding to the file to be purged.

Offset Specifies the offset of the start of the data to be purged. Currently

must be 0.

Length Specifies the length of the data to be purged. Currently must be 0.

StorageLevel Identifies the level in the storage hierarchy from which the data is

to be purged.

Flags Controls the behavior of the purge request. Valid values include:

BFS_PURGE_ALL - purge the entire file (required).

RetBytesPurged Points to an area that will contain the number of bytes purged.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The supplied file descriptor does not correspond to an open file.

EBUSY The specified file descriptor is in use.

EFAULT The RetBytesPurged parameter is a NULL pointer.

EINVAL The Flags, Offset or Length argument is invalid.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-77
Release 4.2, Revision 1

EPERM The client does not have the appropriate privileges to perform

explicit purge operations.

See also

hpss_Migrate, hpss_Stage, hpss_PurgeLock

Notes

None.

Chapter 2. Client API Functions

2-78 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.50. hpss_PurgeLock

Purpose

Lock (or unlock) a file into the top level of its hierarchy.

Synopsis

#include "hpss_api.h"

int
hpss_PurgeLock(

int Fildes, /* IN */

purgelock_flag_t Flag /* IN */

Description

The hpss_PurgeLock routine either locks a file in the top level of its hierarchy from being purged

or removes an existing lock.

Parameters
Fildes Specifies the file descriptor corresponding to the file to be locked/

unlocked.

Flag Controls whether the request locks or unlocks the file. Possible

values are:

PURGE_LOCK - Purge lock the file

PURGE_UNLOCK - Purge unlock the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The supplied file descriptor does not correspond to an open file.

EBUSY The specified file descriptor is in use.

ESTALE The connection for this entry is not valid.

See also

hpss_Purge.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-79
Release 4.2, Revision 1

2.1.51. hpss_PurgeLoginContext

Purpose

Purge a login context and stop the refresh thread.

Syntax

#include <hpsscomm.h>

signed32

hpss_PurgeLoginContext(void);

Description

This routine purges the login context established by the routine hpss_SetLoginContext. It also

stops the refresh thread that was maintaining the context.

Parameters
None.

Return values

Upon successful completion, a value of zero is returned. Otherwise, one of the error conditions

below is returned.

Error conditions
HPSS_E_NOERROR Successful completion

sec_login_s_context_invalid login context was invalid

other errno values from any pthread_* routine

See also

hpss_SetLoginContext.

Notes

None.

Chapter 2. Client API Functions

2-80 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.52. hpss_Read

Purpose

Read a contiguous section of an HPSS file, beginning at the current file offset, into a client buffer.

Synopsis

#include "hpss_api.h"

ssize_t
hpss_Read(

int Fildes, /* IN */

void *Buf, /* IN */

size_t Nbyte); /* IN */

Description

The hpss_Read function attempts to read Nbyte bytes from the file associated with the open file

handle, Fildes, into the client buffer pointed to by Buf.

Parameters
Fildes Specifies the open file handle associated with the file from which

data is to be read.

Buf Point to a buffer where the data is to be placed.

Nbyte Specifies the number of bytes to be read.

Return values

Upon successful completion, hpss_Read returns a nonnegative value that is the number of bytes

read, including any holes encountered. Otherwise, hpss_Read returns a negative value; the abso-

lute value of which is equal to an errno value set by POSIX.1 read.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for reading.

EBUSY The file is currently in use by another client thread.

EFAULT The Buf parameter is out of range.

EIO An input/output or HPSS internal error occurred.

See also

hpss_Open, hpss_OpenBitfile, hpss_Write, hpss_Lseek, hpss_SetFileOffset, hpss_ReadList,
hpss_WriteList.

Notes

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-81
Release 4.2, Revision 1

None.

Chapter 2. Client API Functions

2-82 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.53. hpss_ReadAttrs

Purpose

Read directory entries and optionally return entry attributes.

Synopsis

#include "hpss_api.h"

int
hpss_ReadAttrs(

int Dirdes, /* IN */

unsigned32 OffsetIn, /* IN */

unsigned32 BufferSize, /* IN */

unsigned32 GetAttributes, /* IN */

unsigned32 *End, /* OUT */

unsigned32 *OffsetOut, /* OUT */

ns_DirEntry_t *DirentPtr); /* OUT */

Description

The hpss_ReadAttrs routine returns a list of directory entries, which optionally includes file/direc-

tory attributes.

Parameters
Dirdes Specifies the open directory stream handle corresponding to the

directory being read.

OffsetIn Specifies the starting directory offset. If zero, the list will be from

the beginning of the directory.

BufferSize Specifies the size of the buffer pointed to by DirentPtr, in bytes.

The maximum number of entries that fit in the buffer will be

returned, until the end of the directory is reached.

GetAttributes Indicates, if nonzero, that attributes will be returned with the

directory entries.

End Points to an area that will contain an indication of whether the last

entry is returned in the current list.

OffsetOut Points to an area that will contain the directory offset at the end of

the returned list. This value can be supplied to a subsequent call

to continue with the next directory entry.

DirentPtr Points to a buffer to hold the returned list of directory entries and

attributes.

Return values

Upon successful completion, the return value indicates the number of directory entries in the

returned list. Otherwise, a negative value is returned, the absolute value of which is equal to an

errno value defined below.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-83
Release 4.2, Revision 1

Error conditions
EBADF The specified directory descriptor does not refer to an open

directory.

EBUSY The directory is currently in use by another client thread.

EFAULT The DirentPtr, End or OffsetOut parameter is a NULL pointer.

EINVAL The BufferSize parameter is zero.

See also

hpss_Opendir, hpss_Closedir.

Notes

Calling hpss_ReadAttrs does not affect the directory offset or cached directory entries that are

manipulated via hpss_Readdir and hpss_Rewinddir.

Chapter 2. Client API Functions

2-84 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.54. hpss_Readdir

Purpose

Read a directory entry.

Synopsis

#include <dirent.h>
#include "hpss_api.h"

int
hpss_Readdir(

int Dirdes, /* IN */

hpss_dirent_t *DirentPtr); /* OUT */

Description

The hpss_Readdir function returns a structure, DirentPtr, representing the directory entry at the

current position in the open directory stream. Reference POSIX.1 for more detailed information.

Parameters
Dirdes Specifies the open directory stream handle corresponding to the

directory being read.

DirentPtr Points to a structure that will contain the directory entry

information.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 readdir.

Error conditions
EBADF The specified directory descriptor does not refer to an open

directory.

EBUSY The directory is currently in use by another client thread.

EFAULT The DirentPtr parameter is a NULL pointer.

See also

hpss_Opendir, hpss_Rewinddir, hpss_Closedir.

Notes

hpss_Readdir is altered from POSIX.1 readdir to be more consistent with other HPSS calls. These

differences are that hpss_Readdir 1) accepts an integer directory stream handle (see

hpss_Opendir) and 2) moves the returned structure pointer to the argument list rather than the

return value.

When the end of the directory is encountered, the d_name field will be set to an empty string, and

the d_namelen field will be set to zero. These fields are in DirentPtr structure.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-85
Release 4.2, Revision 1

2.1.55. hpss_Readlink

Purpose

Read the value of a symbolic link (i.e., the data stored in the symbolic link).

Synopsis

#include "hpss_api.h"

int
hpss_Readlink(

char *Path, /* IN */

char *Contents, /* OUT */

size_t BufferSize); /* IN */

Description

The hpss_Readlink routine returns the value of a symbolic link (not including any terminating

null character) specified by Path into the buffer specified by Contents. The size of the buffer is spec-

ified by BufferSize.

Parameters
Path Specifies the name of the symbolic link to be read.

Contents Points to buffer to contain the value of the symbolic link.

BufferSize Specifies the size of the buffer pointed to by Contents.

Return values

Upon successful completion, the length of the symbolic link name is returned. Otherwise, a nega-

tive value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

read permission is denied on the symbolic link.

EFAULT The Path or Contents parameter is a NULL pointer.

EINVAL The specified file is not a symbolic link.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The specified path name does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ERANGE The size of the Contents buffer is not big enough to contain the

contents of the symbolic link or the value of the BufferSize param-

eter is zero

Chapter 2. Client API Functions

2-86 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See also

hpss_Symlink.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-87
Release 4.2, Revision 1

2.1.56. hpss_ReadList

Purpose

Read data from an HPSS file, specifying lists for data sources and sinks.

Synopsis

#include “hpss_api.h”

int
hpss_ReadList(

IOD_t *IODPtr, /* IN */

unsigned32 Flags, /* IN */

IOR_t *IORPtr); /* OUT */

Description

The hpss_ReadList function reads the file data specified by the source descriptor list in the IOD

pointed to by IODPtr and moves the data to destinations specified by the sink descriptor list in the

IOD. Results of the request will be returned in the structure pointed to by IORPtr. Refer to Chapter

3 for a description of the IOD.

Parameters
IODPtr->Function Specifies the IOD function type. Set to IOD_READ.

IODPtr->SrcDescLength Specifies the number of entries in the source descriptor list.

IODPtr->SinkDescLength Specifies the number of entries in the sink descriptor list.

IODPtr->SrcDescList Specifies a list of descriptors specifying the parts of the file to be

read.

IODPtr->SinkDescList Specifies a list of descriptors containing the destinations of the

data.

Flags Specifies bitmap containing flags modifying the operation of the

read request. Valid values are:

HPSS_READ_SEQUENTIAL - causes data to be read in order at

the Bitfile Server level (i.e., at any point in time, the next byte in

transfer order is being processed - not waiting for a byte later in

transfer order).

IORPtr->RequestID Specifies request identifier assigned to this request by the Client

API.

IORPtr->Flags Specifies status flags. Valid values are:

IOR_COMPLETE - indicates the request has completed.

 IOR_ERROR - indicates an error was encountered.

IOR_GAPINFO_VALID - indicates that the request specific reply

structure returned in the IOR contains information describing a

hole that was encounted during the read.

Chapter 2. Client API Functions

2-88 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

IORPtr->ReqSpecReply Specifies information describing a gap in the file (a hole in which

no data has been written) encountered during the read, if

IOD_GAPINFO_VALID is set in the IORPtr->Flags field.

IORPtr->SrcReplyLength Specifies the number of source reply descriptors.

IORPtr->SinkReplyLength Specifies the number of sink reply descriptors.

IORPtr->SrcReplyList Specifies a list of descriptors containing the data source results.

IORPtr->SinkReplyList Specifies a list of descriptors containing the data sink results.

Return values

Upon successful completion, hpss_ReadList returns zero. Otherwise, hpss_ReadList returns a

negative value; the absolute value of which indicates the specific error.

Error conditions
EBADF A specified file descriptor in the source descriptor list does not

correspond to a file opened for reading.

EBUSY The file is currently in use by another client thread.

EFAULT A memory buffer specified in the sink descriptor list is out of

range.

EINVAL A source descriptor did not specify a client file address, a sink

descriptor specified an invalid address type, or Flags was invalid.

EIO An input/output or HPSS internal error occurred.

See also

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Write, hpss_WriteList, free_ior_mem.

Notes

Data will be transferred up to the point of where a gap is encountered.

Normally, the structure pointed to by the IORPtr parameter should be zeroed out, otherwise

pointers in that structure will be used by the RPC mechanism as if they point to previously allo-

cated memory.

After the client has completed using the reply information returned in the IOR, the pointers

returned as part of the IOR should be freed using rpc_ss_client_free(). The following pointers

must be freed (if non-NULL pointers are returned):

IORPtr->ReqSpecReply

IORPtr->SrcReplyList (each element in the list must be freed)

IORPtr->SinkReplyList (each element in the list must be freed)

Memory allocated to the returned I/O Reply can be freed by calling free_ior_mem(), and supplying

the same IORPtr that was passed to the hpss_ReadList() call.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-89
Release 4.2, Revision 1

2.1.57. hpss_Rename

Purpose

Rename a file or directory.

Synopsis

#include "hpss_api.h"

int
hpss_Rename(

char *Old, /* IN */

char *New); /* IN */

Description

The hpss_Rename function changes the name of the file or directory currently named by Old, to

New.

Parameters
Old Specifies the path name that currently names the file or directory.

New Specifies the path name to which the name is to be changed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 rename.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

one of the directories containing Old or New denies write permis-

sion, or write permission is required and denied for a directory

pointed to by the Old or New arguments.

EFAULT The Old or New parameter is a NULL pointer.

EISDIR The New argument points to a directory, and the Old argument

points to a file that is not a directory.

EMLINK The file named by Old is a directory, and the link count of the

parent directory of New already contains the maximum allowed

number of links.

ENAMETOOLONG The length of the Old or New argument exceeds the system-

imposed limit, or a component of the path name exceeds the

system-imposed limit.

ENOENT The named file does not exist, or the Old or New argument points

to an empty string.

ENOTDIR A component of the path prefix is not a directory.

Chapter 2. Client API Functions

2-90 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ENOTEMPTY The path named by New is a directory containing entries other

than dot and dot-dot.

See also

hpss_Unlink.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-91
Release 4.2, Revision 1

2.1.58. hpss_ReopenBitfile

Purpose

Given the bitfile ID, reopen an HPSS file using the same file table entry.

Synopsis

#include "hpss_api.h"

int
hpss_ReopenBitfile(

int Fildes, /* IN */

hpssoid_t *BitFileID, /* IN */

int Oflag, /* IN */

hsec_UserCred_t *Ucred, /* IN */

gss_token_t *AuthzTicket); /* IN */

Description

The hpss_ReopenBitfile routine reopens the bitfile specified by BitFileID, using the file table entry

currently associated with Fildes.

Parameters
Fildes Specifies the file handle for the currently open file.

BitFileID Points to the bitfile ID of the file to be reopened.

Oflags Specifies the file status and file access modes to be assigned.

Applicable values given below may be OR'ed together. Refer to

POSIX.1 for specific behavior.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_TRUNC

Ucred Points to client's user credentials.

AuthzTicket Points to area where authorization ticket is to be returned.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF Fildes does not refer to an open file.

EBUSY The open file descriptor is in use by another thread.

EFAULT The BitFileID or AuthzTicket parameter is a NULL pointer.

Chapter 2. Client API Functions

2-92 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EINPROGRESS The file is currently being staged. The open should be retried at a

later time.

EINVAL Oflag does not contain a valid access mode.

ENOENT No entry exists for the specified bitfile ID.

See also

hpss_Open, hpss_OpenBitfile.

Notes

If this routine fails, the file table entry identified by Fildes is not freed (it is marked as STALE), so

that a subsequent effort can be made for this same file table entry.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-93
Release 4.2, Revision 1

2.1.59. hpss_Rewinddir

Purpose

Reset position of an open directory stream.

Synopsis

#include "hpss_api.h"

int
hpss_Rewinddir(

int Dirdes); /* IN */

Description

The hpss_Rewinddir function resets the position of an open directory stream corresponding to

Dirdes to the beginning of that directory.

Parameters
Dirdes Specifies the open directory stream handle for which the position

is to be reset.

Return values

Upon successful completion, a value of zero is returned. If an error is encountered, a negative

value is returned whose absolute value is described below.

Error conditions
EBADF The specified directory descriptor does not correspond to an open

directory.

EBUSY Another client thread is currently using this directory descriptor.

See also

hpss_Opendir, hpss_Readdir, hpss_Closedir.

Notes

hpss_Rewinddir is altered from POSIX to return the values described above (whereas the POSIX

rewinddir function does not return a value). Providing a failure indication was thought to be more

important than strict POSIX compatibility.

Chapter 2. Client API Functions

2-94 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.60. hpss_Rmdir

Purpose

Remove an HPSS directory.

Synopsis

#include "hpss_api.h"

int
hpss_Rmdir(

char *Path); /* IN */

Description

The hpss_Rmdir function removes the directory named by Path. The directory will only be

removed if the directory is empty.

Parameters
Path Specifies the path name of the directory to be removed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 rmdir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the parent directory of the directory

to be removed.

EBUSY The named directory is currently in use and cannot be removed.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

ENOTEMPTY The named directory contains entries other than dot and dot-dot.

See also

hpss_Mkdir, hpss_Unlink.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-95
Release 4.2, Revision 1

2.1.61. hpss_SetACL

Purpose

Set the Access Control List of a file.

Synopsis

#include "hpss_api.h"

int
hpss_SetACL(

char *Path, /* IN */

unsigned32 Options, /* IN */

ns_ACLConfArray_t *ACL); /* IN */

Description

The hpss_SetACL function replaces the access control list for the file named by Path.

Parameters
Path Names the file for which the ACL is being replaced.

Options Bit vector used to specify what type of ACL is to be retrieved. One

of:

HPSS_ACL_OPTION_OBJ – return object's normal ACL.

HPSS_ACL_OPTION_IO – return the initial-object ACL. (only

valid for directory objects)

HPSS_ACL_OPTION_IC – return the initial-container ACL. (only

valid for directory objects)

ACL Points to the new access control list for the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below:

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path or ACL parameter is a NULL pointer.

EINVAL Exactly one of the HPSS_ACL_OPTION_* bits must be set in the

Options bit vector to avoid receiving this error.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

Chapter 2. Client API Functions

2-96 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

hpss_DeleteACL, hpss_GetACL, hpss_UpdateACL.

Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API

library.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-97
Release 4.2, Revision 1

2.1.62. hpss_SetAcct

Purpose

Change the current account code.

Synopsis

#include "hpss_api.h"

int
hpss_SetAcct(

acct_rec_t NewCurAcct); /* IN */

Description

The hpss_SetAcct routine changes the accounting code used when creating files and directories for

the current thread.

Parameters
NewCurAcct Specifies the value to be used for the account code for created files

and directories.

Return values

Upon successful completion, hpss_SetAcct returns zero. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below:

Error conditions
EINVAL The client is configured for Unix-style accounting, and therefore

the account code cannot be changed.

See also

hpss_AcctCodeToName, hpss_AcctNameToCode , hpss_Chacct, hpss_ChacctByName,
hpss_GetAcct, hpss_GetAcctName, hpss_SetAcctByName

Notes

None.

Chapter 2. Client API Functions

2-98 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.63. hpss_SetAcctByName

Purpose

Change the current account name.

Synopsis
#include "hpss_api.h"

int

hpss_SetAcctByName(

char *NewAcctName) /* IN */

Description

The hpss_SetAcctByName routine changes the current session account name for the current site for

this thread. Since each site contacted by each thread of the Client API will have its own session

account, the account name returned is that of the site managing the current working directory.

Parameters
NewAcctName When using site-style accounting, this is the new session account

name for the current site. However, when using UID accounting,

NewAcctName can have one of several special meanings:

"" – means set the current session account to the UID of the user

String form of an account number (eg. "123") - means change the current session account index to

123.

User name (eg."smithj") – means use the UID of user "smithj" as the new current session account

index.

Return Values

Upon successful completion, hpss_SetAcctByName returns 0. Otherwise, hpss_SetAcctByName

returns a negative value; the absolute value of that returned indicates the specific error.

Error Conditions
ENOENT The NewAcctName specified is not valid.

EPERM The user does not have sufficient privilege to change the account

name to NewAcctName, or NewAcctName is not defined at the

site indicated by the client's current working directory.

See also
hpss_GetAcct, hpss_Chacct, hpss_SetAcct, hpss_GetAcctName, hpss_ChacctByName.

Notes

If the user’s cell ID is foreign, then a message is returned advising that site-style accounting is

required. If the NewAcctName is null, the the user’s uid will be returned. If the NewAcctName is

a number, then the same number will be returned. Otherwise, the account name is looked up in

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-99
Release 4.2, Revision 1

the DCE registry. If the entry is found, then the corresponding uid is returned. If the entry is not

found, ENOENT is returned.

Chapter 2. Client API Functions

2-100 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.64. hpss_SetBFSStats

Purpose

Reset Bitfile Server statistics.

Synopsis

#include "hpss_api.h"

int
hpss_SetBFSStats(

bfs_stats_t *StatsOut); /* OUT */

Description

The hpss_SetBFSStats routine resets the stage, migration, purge, and delete counts in the Bitfile

Server and sets the last reset time to the current time.

Parameters
StatsOut Points to an area that will contain the current BFS statistics values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The StatsOut parameter is a NULL pointer.

See also

hpss_GetBFSStats.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-101
Release 4.2, Revision 1

2.1.65. hpss_SetConfiguration

Purpose

Update the current Client API configuration information.

Synopsis

#include "hpss_api.h"
#include “api_internal.h”

long
hpss_SetConfiguration(

api_config_t *ConfigIn); /* IN */

Description

The hpss_GetConfiguration routine updates the current configuration values for the Client API.

Parameters
ConfigIn Points to a structure that contains the new configuration attributes

value settings.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The ConfigIn parameter is a NULL pointer.

EINVAL Invalid configuration attribute value setting.

See also

hpss_GetConfiguration, hpss_ClientAPIReset.

Notes

None.

Chapter 2. Client API Functions

2-102 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.66. hpss_SetCOSByHints

Purpose

Create an HPSS file.

Synopsis
#include “hpss_api.h”

int
hpss_SetCOSByHints(

int Filedes, /* IN */

unsigned32 Flags, /* IN */

hpss_cos_hints_t *HintsPtr, /* IN */

hpss_cos_priorities_t *PrioPtr, /* IN */

hpss_cos_md_t *COSPtr); /* OUT */

Description

The hpss_SetCOSByHints routine is used to attempt to place a file in an appropriate Class of

Service before any data has been written to that file. This interface is primarily used when the file

size is not known at the time the file is created, but based on the knowledge of the file at the time

of the first write a better Class of Service may be determined.

Parameters
Filedes Specifies the open file handle for which the Class of Service is to be

set.

Flags Specifies flags which affect the processing of this request. Valid

values are:

BFS_RESET_SEGSIZE - Indicates that the request is only to set a

new storage segment size.

HintsPtr Points to a structure that provides attribute values for selection of

a new Class of Service or storage segment size.

PrioPtr Points to a structure that contains relative priorities for the

attribute values indicated by the HintsPtr parameter.

COSPtr Points to a structure that will contain the attribute values for the

selected Class of Service and storage segment size.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value, defined below.

Error conditions
EBADF The specified file descriptor does not refer to an open file.

EBUSY The file is currently in use by another client thread, or the Bitfile

Server could not complete the request at the current time.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-103
Release 4.2, Revision 1

EFAULT One of HinstPtr, PrioPtr, or COSPtr is a NULL pointer.

EINVAL The specified COS hints are invalid.

EPERM The client does not have the appropriate privileges to perform the

request.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Open, hpss_OpenBitfile.

Notes

None.

Chapter 2. Client API Functions

2-104 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.67. hpss_SetFileOffset

Purpose

Set the current file offset for an open file, given a 64-bit offset value.

Synopsis

#include <unistd.h>
#include "hpss_api.h"

int
hpss_SetFileOffset(

int Fildes, /* IN */

u_signed64 OffsetIn, /* IN */

int Whence, /* IN */

int Direction, /* IN */

u_signed64 *OffsetOut); /* OUT */

Description

The hpss_SetFileOffset function sets the file offset for the open file handle, Fildes. Refer to the

POSIX.1 lseek function for more detailed information. Both input and output offset values are 64-

bit values, to provide accessibility to the full range of HPSS file sizes. Note that since the OffsetIn
value is unsigned, theDirection parameter is provided to specify whether OffsetIn should be used

to move forward or backward in the file.

Parameters
Fildes Specifies the open file handle for which the file offset is to be set.

OffsetIn Specifies the number of bytes to be used in calculating the new file

offset - dependent on the value of Whence and Direction as to the

final effect on the new file offset.

Whence Specifies how to interpret the OffsetIn parameter in setting the file

pointer associated with the Fildes parameter. Values for the

Whence parameter are as follows:

SEEK_SET - file offset set to OffsetIn.

SEEK_CUR - file offset set to current offset plus OffsetIn.

SEEK_END - file offset set to current end of file plus OffsetIn.

Direction Specifies whether OffsetIn should be used to move forward or

backward in the file.

HPSS_SET_OFFSET_FORWARD - consider OffsetIn as being a

nonnegative number.

HPSS_SET_OFFSET_BACKWARD - consider OffsetIn as being a

negative number.

OffsetOut Points to an area to contain the file offset as a result of processing

this request.

Return values

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-105
Release 4.2, Revision 1

Upon successful completion, hpss_SetFileOffset returns zero. Otherwise, hpss_SetFileOffset
returns a negative value; the absolute value of which indicates the specific error.

Error conditions
EBADF The specified file descriptor does not refer to an open file.

EBUSY The file is currently in use by another client thread.

EFAULT OffsetOut is a NULL pointer.

EINVAL The Whence or Direction parameter is invalid or the resulting offset

would be invalid (a negative value or beyond the largest

supported file size).

ENOSPC Resources could not be allocated to satisfy the request.

See also

hpss_Read, hpss_Write, hpss_Lseek.

Notes

None.

Chapter 2. Client API Functions

2-106 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.68. hpss_SetLoginContext

Purpose

Establish a security context for an application.

Synopsis

#include <hpsscomm.h>

signed32 hpss_SetLoginContext(
char *PrincipalName, /* IN */

char *KeytabName); /* IN */

Description

This routine establishes a security context for an application. The routine gets the application's key

from the named key table. If either of the arguments is NULL, default values will be obtained from

environment variables HPSS_PRINCIPALand HPSS_KTAB_PATH,respectively. This routine may

be called as part of the application startup procedure. If this routine or a similar routine is not

called, the application will run in the security context defined by dce_logi n.

Parameters
PrincipalName Specifies the server's principal name.

KeytabName Specifies the file name for the key table.

Return values

Upon successful completion, a value of zero is returned. Otherwise, one of the error conditions

below is returned.

Error conditions
HPSS_E_NOERROR Successful completion

HPSS_EINVAL Invalid (NULL) parameters

DCE error codes

See also

hpss_PurgeLoginContext

Notes

In most cases, application programs should explicitly specify the principal name and keytab file

name.

This routine may only be called once. On subsequent calls, it returns error HPSS_EINVAL.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-107
Release 4.2, Revision 1

2.1.69. hpss_SiteIdToName

Purpose

Convert a given HPSS site id to its corresponding HPSS site name.

Synopsis
#include "hpss_api.h"

int

hpss_SiteIdToName(

uuid_t *SiteId, /* IN */

char *SiteName) /* OUT */

Description

The hpss_SiteIdToName routine converts the HPSS site id given in SiteId to its corresponding

string representation, returned in SiteName. When an error is encountered, hpss_SiteIdToName

will return immediately.

Parameters
SiteId Pointer to an HPSS site’s UUID. If the site id is null, return the

current local site id.

SiteName An HPSS site’s text name. If the site name is null, return the

current local site name.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a negative value is returned; the

absolute value of that returned is equal to an errno value defined below.

Error Conditions
ENOENT The value passed in SiteId does not correspond to a known HPSS

site.

ECONN There was a communication problem during the translation.

See also
hpss_SiteNameToId

Notes
None.

Chapter 2. Client API Functions

2-108 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.70. hpss_SiteNameToId

Purpose

Convert a given HPSS site name to its corresponding HPSS site id.

Synopsis
#include "hpss_api.h"

int

hpss_SiteNameToId(

char *SiteName, /* IN */

uuid_t *SiteId) /* OUT */

Description

The hpss_SiteNameToId routine converts the HPSS site name given in SiteName to its corre-

sponding HPSS site id, returned in SiteId. When an error is encountered, hpss_SiteIdToName will

return immediately.

Parameters
SiteName An HPSS site’s text name. If the site name is null, return the

current local site name.

SiteId A pointer to an HPSS site’s UUID. If the site id is null, return the

current local site id.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a negative value is returned; the

absolute value of that returned is equal to an errno value defined below.

Error Conditions
ENOENT The value passed in SiteName does not correspond to a known

HPSS site.

ECONN There was a communication problem during the translation.

See also
hpss_SiteIdToName

Notes
None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-109
Release 4.2, Revision 1

2.1.71. hpss_Stage

Purpose

Stage a piece of a file to a specified level in the storage hierarchy.

Synopsis

#include "hpss_api.h"
int

hpss_Stage(
int Fildes, /* IN */

u_signed64 Offset, /* IN */

u_signed64 Length, /* IN */

unsigned32 StorageLevel, /* IN */

unsigned32 Flags); /* IN */

Description

The hpss_Stage routine stages part of an open file, specified by Fildes, Offset and Length to a level

in the storage hierarchy, specified by StorageLevel. The Flags argument is used to control behavior

of the request.

Parameters
Fildes Specifies the file descriptor, identifying the file to be staged.

Offset Specifies the offset of the start of the data to be staged.

Length Specifies the length of the data to be staged.

StorageLevel Identifies the level in the storage hierarchy to which the data is to

be staged. Currently, the only supported value is 0.

Flags Controls the behavior of the stage request. Valid values include:

BFS_STAGE_ALL - stage entire file.

BFS_ASYNC_CALL - return after initiating stage.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF The supplied file descriptor does not correspond to an open file.

EINVAL The Flags, Offset or Length argument is invalid.

EBUSY The specified file descriptor is currently in use.

EPERM The client does not have the appropriate privileges to perform the

operation.

Chapter 2. Client API Functions

2-110 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See also

hpss_Migrate, hpss_Purge, hpss_StageCallBack.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-111
Release 4.2, Revision 1

2.1.72. hpss_StageCallBack

Purpose

Initiate staging a piece of a file in the background.

Synopsis

#include "hpss_api.h"

int
hpss_StageCallBack(

char *Path, /* IN */

u_signed64 Offset, /* IN */

u_signed64 Length, /* IN */

unsigned32 StorageLevel, /* IN */

bfs_callback_addr_t CallBackPtr, /* IN */

unsigned32 Flags, /* IN */

signed32 *ReqID, /* OUT */

hpssoid_t *BitfileID); /* OUT */

Description

The hpss_StageCallBack routine initiates a background stage of part of a file, specified by Fildes,
Offset and Length to a level in the storage hierarchy, specified by StorageLevel. The Flags argument

is used to control behavior of the request.

Parameters
Path Specifies the pathname of the file to be staged.

Offset Specifies the offset of the start of the data to be staged.

Length Specifies the amount of the data to be staged.

StorageLevel Identifies the level in the storage hierarchy to which the data is to

be staged.

CallBackPtr Callback information.

Flags Controls the behavior of the stage request. Valid values include:

BFS_STAGE_ALL - stage entire file.

ReqID Assigned request identification number.

BitfileID Bitfile ID.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCESS Search permission is denied for a component of the path prefix.

Chapter 2. Client API Functions

2-112 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EFAULT The Path parameter is a NULL pointer.

EINVAL The value of the Offset parameter is beyond the end of the file or

the StorageLevel parameter is invalid for the storage hierarchy.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the pathname exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Migrate, hpss_Purge, hpss_Stage.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-113
Release 4.2, Revision 1

2.1.73. hpss_Stat

Purpose

Get file status (POSIX).

Synopsis

#include "hpss_api.h"

int
hpss_Stat(

char *Path, /* IN */

struct stat *Buf); /* OUT */

Description

The hpss_Stat function obtains information about the file named by Path and returns it in the struc-

ture pointed to by Buf. Refer to POSIX.1 for more detailed information.

Parameters
Path Points to the path name of the file being queried.

Buf Points to a stat structure that will contain the status information

for the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions
EACCES Search permission is denied for a component of the path prefix.

EFAULT The Path or Buf parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,

hpss_Lstat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

Chapter 2. Client API Functions

2-114 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Note that if the named file is a symbolic link, information is returned for the file to which the

contents of the link point. See hpss_Lstat to obtain information about the symbolic link itself .

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-115
Release 4.2, Revision 1

2.1.74. hpss_Statfs

Purpose

Returns file system information for a Class of Service.

Synopsis

#include "hpss_api.h"

int
hpss_Statfs(

unsigned long COSId, /* IN */

struct statfs *StatfsBuffer); /* OUT */

Description

The hpss_Statfs routine returns file system information as defined in the statfs structure.

Parameters
COSId Specifies the identifier for the Class of Service that is being

queried.

StatfsBuffer Points to area to contain the file system information.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The StatfsBuffer parameter is a NULL pointer.

EINVAL The specified Class of Service does not exist.

See also

None.

Notes

None.

Chapter 2. Client API Functions

2-116 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.75. hpss_Statvfs

Purpose

Returns file system information for a Class of Service.

Synopsis
#include "hpss_api.h"

int

hpss_Statvfs(

unsigned32 CosId, /* IN */

struct statvfs *StatvfsBuffer) /* OUT */

Description

The hpss_Statvfs routine returns file system information as defined in the statvfs structure for the

given Class of Service as a total from all Bitfile Servers which manage files in the Class of Service.

Parameters
CosId The identifier for the Class of Service that is being queried.

StatvfsBuffer Pointer to area to contain the file system information.

Return Values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;

the absolute value of that returned is equal to an errno value defined below.

Error Conditions
EFAULT The StatvfsBuffer parameter is a NULL pointer.

EINVAL The specified Class of Service does not exist.

See also

None.

Notes

The block size is that of the top storage class in the hierarchy.

The f_name field of the statvfs structure will return the CDS service name of the root Name Server.

The f_pack field of the statvfs structure will return the CDS name of the local Bitfile Server that

contains the most free space for the given Class of Service.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-117
Release 4.2, Revision 1

2.1.76. hpss_Symlink

Purpose

Create a symbolic link.

Synopsis

#include "hpss_api.h"

int
hpss_Symlink(

char *Contents, /* IN */

char *Path); /* IN */

Description

The hpss_Symlink routine creates a symbolic link pointing to the pathname specified in Contents
with the link's name identified by Path.

Parameters
Contents Specifies the path name to which the symbolic link will point.

Path Specifies the name of the symbolic link to be created.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the parent directory of the specified

path name.

EFAULT The Path or Contents parameter is a NULL pointer.

EEXIST The specified file already exists.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT No entry exists for a component of the path name.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Readlink.

Notes

None.

Chapter 2. Client API Functions

2-118 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.77. hpss_ThreadCleanUp

Purpose

Cleans up a thread's Client API state.

Synopsis

#include "hpss_api.h"

int
hpss_ThreadCleanUp(

pthread_t ThreadID); /* IN */

Description

The hpss_ThreadCleanUp routine frees resources used by a thread's Client API context.

Parameters
ThreadID Specifies the thread identifier for the thread whose resources are to

be freed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT State for the specified thread could not be found.

See also

None.

Notes

The hpss_ThreadCleanUp routine should be called once for each thread which terminates and has

previously called the Client API.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-119
Release 4.2, Revision 1

2.1.78. hpss_Truncate

Purpose

Set the length of a file.

Synopsis

#include "hpss_api.h"

int
hpss_Truncate(

char *Path, /* IN */

u_signed64 Length); /* IN */

Description

The hpss_Truncate routine sets the length of a file, specified by the Path argument. If the new file

length is less than the current length, the space allocated beyond the new length will be freed. If

the new length is greater than the current length, a hole is created in the file.

Parameters
Path Specifies the path name of the file to be truncated.

Length Specifies the new length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the file.

EFAULT The Path parameter is a NULL pointer.

EINVAL Path specifies a directory.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The specified path name does not exist.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Ftruncate, hpss_Fclear, hpss_FileSetAttributes.

Notes

None.

Chapter 2. Client API Functions

2-120 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.79. hpss_Umask

Purpose

Set the file creation mask.

Synopsis

#include "hpss_api.h"

mode_t

hpss_Umask(
mode_t Cmask); /* IN */

Description

The hpss_Umask function sets the file mode creation mask of the thread and returns the previous

value of the mask. Refer to POSIX.1 umask for further details.

Parameters
Cmask Specifies the file mode creation mask to be used by subsequent

hpss_Open, hpss_Create and hpss_Mkdir calls.

Return values

hpss_Umask returns the previous file mode creation mask for the thread.

Error conditions

The hpss_Umask function is always successful and no return values are reserved to indicate an

error.

See also

hpss_Open, hpss_Create, hpss_Mkdir.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-121
Release 4.2, Revision 1

2.1.80. hpss_Unlink

Purpose

Remove an entry from an HPSS directory.

Synopsis

#include "hpss_api.h"

int
hpss_Unlink(

char *Path); /* IN */

Description

The hpss_Unlink function removes the entry named by the Path, and decrements the link count of

the file. If the link count becomes zero, the file will be deleted when it is no longer open by any

client.

Parameters
Path Names the directory entry to be removed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 unlink.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or

write permission is denied on the directory containing the link to

be removed.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The file named by Path is a directory.

See also

hpss_Close, hpss_Link.

Notes

Chapter 2. Client API Functions

2-122 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Note that using hpss_Unlink to remove directory names is not supported.

Also note that if the Path refers to a symbolic link, the link itself shall be removed.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-123
Release 4.2, Revision 1

2.1.81. hpss_UpdateACL

Purpose

Update entries in the Access Control List of a file.

Synopsis

#include "hpss_api.h"

int
hpss_UpdateACL(

char *Path, /* IN */

unsigned32 Options, /* IN */

ns_ACLConfArray_t *ACL); /* IN */

Description

The hpss_UpdateACL function updates entries, specified by ACL, in the access control list for the

file named by Path.

Parameters
Path Names the file for which the ACL is being updated.

Options A bit vector containing bits which control the behavior of

hpss_UpdateACL. It is possible to specify which ACL is to be

updated, and to specify the behavior of hpss_UpdateACL while

calculating the MASK_OBJ.

Options can be used to mimic the behavior of the following acl_edit options: -n, -c, and -p. This

mimicking is done using the following mutually-exclusive constants:

DONT_CALCULATE_MASK

Specifies that a new MASK_OBJ should not be calculated. This option is useful when the ACL

operations require the calculation of a new MASK_OBJ, but doing so would result in an error. This

option allows the operations to be carried out, but a new MASK_OBJ is not calculated.

CALCULATE_MASK_IGNORE_ERRORS

Creates or modifies the object's MASK_OBJ entry with permissions equal to the union of all entries

other than type USER_OBJ, OTHER_OBJ, and UNAUTHENTICATED. This creation or modifica-

tion is done after all other modifications to the ACL are performed. The new MASK_OBJ is set even

if it grants permissions previously masked out. It is recommended that this option be used only if

not specifying it results in an error. This option is useful only for objects that support the

MASK_OBJ entry type and are required to recalculate a new MASK_OBJ after they are modified.

PURGE_MASKED_PERMS

Purges all masked permissions (before any other modifications are made). This option is useful

only for ACLs that contain an entry of type MASK_OBJ. Use it to prevent unintentionally granting

permissions to an existing entry when a new MASK_OBJ is calculated as a result of adding or

modifying an ACL entry.

Chapter 2. Client API Functions

2-124 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Options can also be used to specify which ACL is to be updated. The following mutually-exclusive

constants can be used to make this selection:

HPSS_ACL_OPTION_OBJ

HPSS_ACL_OPTION_IC

HPSS_ACL_OPTION_IO

If an update operation creates a MASK_OBJ that unintentionally adds permissions to an existing

ACL entry, the modification causing the MASK_OBJ recalculation will abort with an error unless

the CALCULATE_MASK_IGNORE_ERRORS or DONT_CALCULATE_MASK options are

specified.

ACL Points to the ACL entries to be updated.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path or ACL parameter is a NULL pointer.

EINVAL There are two sets of mutually exclusive flags available through the
Options parameter. Some invalid combination of flags was provided.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

hpss_DeleteACL, hpss_GetACL, hpss_SetACL.

Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API

library.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-125
Release 4.2, Revision 1

2.1.82. hpss_Utime

Purpose

Set access and modification times of an HPSS file.

Synopsis

#include <utime.h>
#include "hpss_api.h"

int
hpss_Utime(

char *Path, /* IN */

const struct utimbuf *Times); /* IN */

Description

The hpss_Utime function sets the access and modification times of the file named by Path to the

values specified in the structure pointed to by Times. Refer to POSIX.1 for more detailed

information.

Parameters
Path Names the file for which times are being changed.

Times Points to a structure containing the new time values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value set by POSIX.1 utime.

Error conditions
EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-

imposed limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the

operation.

See also

hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.

Notes

Chapter 2. Client API Functions

2-126 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-127
Release 4.2, Revision 1

2.1.83. hpss_Write

Purpose

Write data from a client buffer to a contiguous section of an HPSS file, beginning at the current file

offset.

Synopsis

#include "hpss_api.h"

ssize_t

hpss_Write(
int Fildes, /* IN */

const void *Buf, /* IN */

size_t Nbyte); /* IN */

Description

The hpss_Write function attempts to write Nbyte bytes from the client buffer pointed to by Buf to
the file associated with the open file handle, Fildes.

Parameters
Fildes Specifies the open file handle associated with the file to which data

is to be written.

Buf Points to a buffer where the data is to be found.

Nbyte Specifies the number of bytes to be written.

Return values

Upon successful completion, hpss_Write returns a nonnegative value that is the number of bytes

written. Otherwise, hpss_Write returns a negative value; the absolute value of which is equal to

an errno value set by POSIX.1 write.

Error conditions
EBADF The specified file descriptor does not correspond to a file opened

for writing.

EBUSY The file is currently in use by another client thread.

EFAULT The Buf parameter is out of range.

EFBIG The write operation would cause the file to exceed the system-

imposed maximum file length.

EIO An input/output or HPSS internal error occurred.

ENOSPC There is no free space remaining to satisfy the write request.

See also

Chapter 2. Client API Functions

2-128 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Lseek, hpss_SetFileOffset, hpss_ReadList,
hpss_WriteList.

Notes

None.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-129
Release 4.2, Revision 1

2.1.84. hpss_WriteList

Purpose

Write data to an HPSS file, specifying lists for data source and sink.

Synopsis

#include "hpss_api.h”

int

hpss_WriteList(
IOD_t *IODPtr, /* IN */

unsigned32 Flags, /* IN */

IOR_t *IORPtr); /* OUT */

Description

The hpss_WriteList function writes data to an HPSS file specified by the sink descriptor list in the

IOD pointed to by IODPtr, moving the data from the sources specified by the source descriptor list

in the IOD. Results of the request are returned in the structure pointed to by IORPtr. Refer to

Chapter 3 for a description of the IOD.

Parameters
IODPtr->Function Specifies the IOD function type. Set to IOD_WRITE.

IODPtr->SrcDescLength Specifies the number of entries in the source descriptor list.

IODPtr->SinkDescLength Specifies the number of entries in the sink descriptor list.

IODPtr->SrcDescList Specifies a list of descriptors specifying the sources for the data.

IODPtr->SinkDescList Specifies a list of descriptors specifying the parts of the file to be

written.

Flags Specifies a bitmap containing flags to modify the write. Currently

only a value of zero (0) is valid.

IORPtr->RequestID Specifies the request identifier assigned to this request by the

Client API.

IORPtr->Flags Specifies status flags. Valid values are:

IOR_COMPLETE - indicates the request has completed.

IOR_ERROR - indicates an error was encountered.

IORPtr->SrcReplyLength Specifies the number of source reply descriptors.

IORPtr->SinkReplyLength Specifies the number of sink reply descriptors.

IORPtr->SrcReplyList Specifies a list of descriptors specifying the data source results.

IORPtr->SinkReplyList Specifies a list of descriptors specifying the data sink results.

Chapter 2. Client API Functions

2-130 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Return values

Upon successful completion, hpss_WriteList returns zero. Otherwise, hpss_WriteList returns a

negative value; the absolute value of which indicates the specific error.

Error conditions
EBADF A specified file descriptor in the sink descriptor list does not corre-

spond to a file opened for writing.

EBUSY The file is currently in use by another client thread.

EFAULT A memory buffer address in the source descriptor list is out of

range.

EFBIG An attempt was made to write a file that would exceed the HPSS-

defined maximum file size.

EINVAL A sink descriptor did not specify a client file address, a source

descriptor specified an invalid address type, or Flags was invalid.

EIO An input/output or HPSS internal error occurred.

ENOSPC There is no free space remaining to satisfy the write request.

See also

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Write, hpss_ReadList, free_ior_mem.

Notes
Memory allocated to the returned I/O Reply can be freed by calling free_ior_mem(), and supplying

the same IORPtr that was passed to the hpss_ReadList() call

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-131
Release 4.2, Revision 1

2.1.85. hpss_XLoadThreadState

Purpose

Updates the user credentials and file/directory creation mask for the current thread's Client API

state, based on the specified user ID and fully-qualified DCE client name. The fully-qualified client

name allows for correct DCE cross-cell authentication and authorization to be performed.

Synopsis

#include "hpss_api.h"

int
hpss_XLoadThreadState(

uid_t UserID, /* IN */

mode_t Umask, /* IN */

char *ClientFullName); /* IN */

Description

The hpss_XLoadThreadState routine updates the user credentials and file/directory creation

mask found in the current thread's Client API state, using the specified user ID and fully-qualified

DCE client name.

Parameters
UserID Specifies the user ID for the user whose credentials are to be

loaded.

Umask Specifies the new file/directory creation mask.

ClientFullName Specifies the fully-qualified client name in the following format /

.../{dce cell name}/username (e.g., /.../

dce.sandia.gov/jtjoker)

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also

hpss_LoadThreadState, hpss_LoadDefaultThreadState

Notes
This routine is primarily used for DCE cross-cell authentication.

Normally, the structure pointed to by the IORPtr parameter should be zeroed out, otherwise point-

ers in that structure will be used by the RPC mechanism as if they point to previously allocated

memory.

After the client has completed using the reply information returned in the IOR, the pointers

Chapter 2. Client API Functions

2-132 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

returned as part of the IOR should be freed using rpc_ss_client_free(). The following pointers

must be freed (if non-NULL pointers are returned):

IORPtr->SrcReplyList (each element in the list must be freed)

IORPtr->SinkReplyList (each element in the list must be freed)

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-133
Release 4.2, Revision 1

2.1.86. free_ior_mem

Purpose
Free memory allocated to a returned I/O Reply structure.

Synopsis
#include “traniod.h

void
free_ior_mem(

IOR_t *IORPtr); /* IN */

Description
The free_ior_mem function releases the memory that was allocated to the I/O Reply pointed to by

IORPtr. The memory would have been previously allocated during a call to hpss_ReadList or

hpss_WriteList.

Parameters
IORPtr Points to the I/O Reply that contains pointers to memory areas

which are to be released.

Return values

None.

Error conditions
None.

See also

hpss_ReadList, hpss_WriteList.

Notes

free_ior_mem should only be used to free memory that was allocated to an I/O Reply returned by

a call to hpss_ReadList or hpss_WriteList.

2.2. Non-DCE Client API Specific Interfaces

This section describes only those API’s that are available through the Non-DCE Client API which

are not available through the standard Client API. For notes on how the NDAPI differs from the

standard Client API, see section 1.3.

Note that there are two errors (in additon to the ones listed in section 2.1.) that may be returned

from a Non-Client API call which are not actually errors generated by performing the call, but are

caused by a failure of the library to successfully communicate with the Non-DCE Client Gateway.

These values may be returned from any routine and include:

EPIPE This indicates a communications problem with the Non-DCE

Client Gateway, between the time that the command was issued

and the time the reply was received. In cases where this error is

returned from a API that modifies the state of an HPSS object, the

Chapter 2. Client API Functions

2-134 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

failure or success of the operation can not be assumed and the state

of the object should be queried before continuing.An HPSS server

is not ready or received a communication error, and the request

could not be retried.

ENOCONNECT This indicates a communication problem either between between

the Non-DCE Client Library and the Non-DCE Client Gateway, or

the standard Client Library and one of the core HPSS servers

(Name Server, Bitfile Server or Location Server).

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-135
Release 4.2, Revision 1

2.2.1. hpss_PVRetrievals

Purpose
Get recent requests on a physical volume.

Synopsis
#include “hpss_api.h

int
hpss_PVRetrievals(

char *PVName, /* IN */

unsigned32 *MountCntSinceService, /* OUT */

unsigned32 *MountCntSinceMaint, /* OUT */

unsigned32 *NumReads, /* OUT */

unsigned32 *NumWrites); /* OUT */

Description
The hpss_PVRerrievals function is used to get physical volume access statistics for a selected

volume. These statistics include number of mounts since last service, number of mounts since last

maintenance, number of reads, and number of writes.

Parameters
PVName The physical volume name.

MountCntSinceService The number of mounts since last service.

MountCntSinceMaint The number of mounts since last maintainence.

NumReads The number of reads.

NumWrites The number of writes.

Return values

None.

Error conditions

None.

See also

None.

Notes

None.

2.3. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are pro-

vided by this subsystem. A data definition may be represented by constructs such as data structures and

Chapter 2. Client API Functions

2-136 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

constants. For each data definition, a description, format (including parameter descriptions), and clients

which access the data definition are provided. Note: Descriptions of the IOD and IOR structures may be

found in Chapter 3.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-137
Release 4.2, Revision 1

2.3.1. File Creation Hint Structure - hpss_cos_hints_t

Description

The file creation hint structure contains information that allows clients to specify preferences or knowledge

of file structure or access patterns that may affect operations of HPSS.

Format

The COS hints has the following format:

typedef struct hpss_cos_hints {
unsigned32 COSId;
char COSName [HPSS_MAX_OBJECT_NAME];
u_signed64 OptimumAccessSize;
u_signed64 MinFileSize;
u_signed64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvgLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;
unsigned32 StripeWidth;
u_signed64 StripeLength;

} hpss_cos_hints_t;

COSId

The class of service type. It indicates the classes of service requested for the bitfile.

COSName

Specifies the name of the class of service for this bitfile.

OptimumAccessSize

Specifies the block size in bytes for this class of service that yields the maximum data transfer rate.

MinFileSize

Specifies the minimum size in bytes of a bitfile in this class of service.

MaxFileSize

Specifies the maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequency

Specifies the expected rate of access for the bitfile.

Chapter 2. Client API Functions

2-138 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

FREQ_HOURLY

FREQ_DAILY

FREQ_WEEKLY

FREQ_MONTHLY

FREQ_ARCHIVE

TransferRate

Specifies the approximate file transfer rate in kilobytes per second.

AvgLatency

Specifies the time in seconds from when a request is received by a storage server until data actually begins

to transmit. This is typically non-zero for tape media.

WriteOps

Specifies the valid write operations for the bitfile:

HPSS_OP_WRITE Allow write operations.

HPSS_OP_APPEND Allow append operations.

ReadOps

Specifies the valid read operations for the bitfile:

HPSS_OP_READ Allow read operations.

StageCode

Specifies the staging behavior desired:

COS_STAGE_NO_STAGE File is not to be staged on open. The data will be read from the

current level in the hierarchy, or data may be

explicitly staged by the client.

COS_STAGE_ON_OPEN Entire file is to be staged to the top level in the hierarchy before

open returns.

COS_STAGE_ON_OPEN_ASYNC Entire file is to be staged to the top level in the hierarchy

without blocking in open. Reads / writes are

blocked only until the portion of the file being

accessed is staged.

COS_STAGE_ON_OPEN_BACKGROUND File is to be staged in a background task.

StripeWidth

Specifies the stripe width of the class of service.

StripeLength

Specifies the stripe length of the class of service.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-139
Release 4.2, Revision 1

2.3.2. Class of Service Priorities - hpss_cos_priorities_t

Description

The class of service priorities structure assists a client in selecting a COS for a bitfile.

Structure use - dynamic memory tables.

Format

The COS priorities has the following format:

typedef struct hpss_cos_priorities {
unsigned32 COSIdPriority;
unsigned32 COSNamePriority;
unsigned32 OptimumAccessSizePriority;
unsigned32 MinFileSizePriority;
unsigned32 MaxFileSizePriority;
unsigned32 AccessFrequencyPriority;
unsigned32 TransferRatePriority;
unsigned32 AvgLatencyPriority;
unsigned32 WriteOpsPriority;
unsigned32 ReadOpsPriority;
unsigned32 StageCodePriority;
unsigned32 StripeWidthPriority;
unsigned32 StripeLengthPriority;

} hpss_cos_priorities_t;

COSIdPriority

Specifies the class of service ID priority for the class of service the bitfile should be in.

COSNamePriority

Specifies the class of service name priority for this bitfile.

OptimumAccessSizePriority

Specifies the priority for the block size for this class of service that yields the maximum data transfer rate.

MinFileSizePriority

Specifies the priority for the minimum size in bytes of a bitfile in this class of service.

MaxFileSizePriority

Specifies the priority for the maximum size in bytes to which the bitfile can grow and remain in this class

of service.

AccessFrequencyPriority

Specifies the priority for the expected rate of access for the bitfile.

TransferRatePriority

Chapter 2. Client API Functions

2-140 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Specifies the priority for the class of service file transfer rate.

AvgLatencyPriority

Specifies the class of service priority for the average latency time from request time until data begins to

transfer.

WriteOpsPriority

Specifies the priority for the valid write operations for the bitfile.

ReadOpsPriority

Specifies the priority for the valid read operations for the bitfile.

StageCodePriority

Specifies the priority for the desired stage code.

Following are the possible priority values:

NO_PRIORITY

LOW_PRIORITY

DESIRED_PRIORITY

HIGHLY_DESIRED_PRIORITY

REQUIRED_PRIORITY

StripeWidthPriority

Specifies the stripe width priority of the storage class.

StripeLengthPriority

Specifies the stripe length priority of the storage class.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-141
Release 4.2, Revision 1

2.3.3. Class of Service Metadata Structure - hpss_cos_md_t

Description

The Class of Service metadata structure contains information about the configuration of a Class of Service.

Format

The Class of Service metadata structure has the following format:

typedef struct {
unsigned32 COSId;
unsigned32 HierId;
char COSName [HPSS_MAX_OBJECT_NAME];
unsigned32 OptimumAccessSize;
unsigned32 Flags
u_signed64 MinFileSize;
u_signed64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvgLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;

} hpss_cos_md_t;

COSId

The class of service type. It indicates which of several classes of service the bitfile is in.

HierId

The storage hierarchy associated with this Class of Service.

COSName

Specifies the name of the class of service for this bitfile.

OptimumAccessSize

Specifies the block size in bytes for this class of service that yields the maximum data transfer rate.

Flags

Optionally specifies one of the following options:

COS_ENFORCE_MAX_FILE_SIZE If ON, bitfiles cannot be created in this COS with a

size greater than MaxFileSize. Attempts to do so will

result in the request being rejected with an error.

COS_FORCE_SELECTION If ON, a client must explicitly select this COS in order

to have a file assigned to it. If the client merely

supplies general COS hints for a bitfile, this COS will

not be selected.

MinFileSize

Chapter 2. Client API Functions

2-142 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Specifies the minimum size in bytes of a bitfile in this class of service.

MaxFileSize

Specifies the maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequency

Specifies the expected rate of access for the bitfile.

FREQ_HOURLY

FREQ_DAILY

FREQ_WEEKLY

FREQ_MONTHLY

FREQ_ARCHIVE

TransferRate

Specifies the approximate file transfer rate in kilobytes per second.

AvgLatency

Specifies the time in seconds from when a request is received by a storage server until data actually begins

to transmit. This is typically non-zero for tape media.

WriteOps

Specifies the valid write operations for the bitfile:

HPSS_OP_WRITE Allow write operations.

HPSS_OP_APPEND Allow append operations.

ReadOps

Specifies the valid read operations for the bitfile:

HPSS_OP_READ Allow read operations.

StageCode

Specifies the staging behavior desired

COS_STAGE_NO_STAGE File is not to be staged on open. The data will be read from the

current level in the hierarchy, or data may be

explicitly staged by the client.

COS_STAGE_ON_OPEN Entire file is to be staged to the top level in the hierarchy before

open returns.

COS_STAGE_ON_OPEN_ASYNC Entire file is to be staged to the top level in the hierarchy

without blocking in open. Reads / writes are

blocked only until the portion of the file being

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-143
Release 4.2, Revision 1

accessed is staged.

COS_STAGE_ON_OPEN_BACKGROUND File is to be staged as a background task.

Chapter 2. Client API Functions

2-144 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.4. File Attribute Structure - hpss_fileattr_t

Description

The file attribute structure contains file attributes that are managed by both the Name Server and the Bitfile

Server.

Format

The file attribute structure has the following format:

typedef struct hpss_filattr {
ns_ObjHandle_t NSObjectHandle;
ns_Attrs_t NSAttr;
bf_attrib_t BFSAttr;

} hpss_fileattr_t;

NSObjectHandle

Specifies the handle that refers to the open file or directory. Refer to section 2.3.8 for more detailed infor-

mation.

NSAttr

Specifies the file attributes managed by the Name Server. Reference sect for more detailed information.

BFSAttr

Specifies the file attributes managed by the Bitfile Server. Reference the Bitfile Server design document for

more detailed information.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-145
Release 4.2, Revision 1

2.3.5. Extended File Attribute Structure - hpss_xfileattr_t

Description

The file attribute structure contains file attributes that are managed by both the Name Server and the Bitfile

Server. This structure allows the user to retrieve the extended attributes for the Bitfile Server.

Format

The file attribute structure has the following format:

typedef struct hpss_xfilattr {
ns_ObjHandle_t NSObjectHandle;
ns_Attrs_t NSAttr;
bf_xattrib_t BFSAttr;

} hpss_xfileattr_t;

NSObjectHandle

Specifies the handle that refers to the open file or directory. Refer to section 2.3.8 for more detailed infor-

mation.

NSAttr

Specifies the file attributes managed by the Name Server. Reference section 2.3.6 for more detailed infor-

mation.

BFSAttr

Specifies the extended file attributes managed by the Bitfile Server. Reference the Bitfile Server design doc-

ument for more detailed information.

Chapter 2. Client API Functions

2-146 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.6. Name Server Attribute Structure - ns_Attrs_t

Description

The Name Server attribute structure contains fields for the various attributes (metadata) that the Name

Server maintains for an object.

Format

The Name Server attributes structure has the following format:

typedef struct {
unsigned32 Account;
unsigned32 ACLOptions;
hpssiod_t BitFileId;
unsigned32 ClassOfService;
unsigned char Comment[HPSS_MAX_COMMENT_LENGTH];
unsigned32 CompositePerms;
byte DMHandle[MAX_DMEPI_HANDLE_SIZE];
unsigned32 DMHandleLength;
unsigned32 EntryCount,
unsigned32 FamilyId;
ns_ObjHandle_t FilesetHandle;
u_signed64 FilesetId;
unsigned32 FilesetRootRSN;
unsigned32 FilesetStateFlags;
unsigned32 FilesetType;
u_signed64 FileSize;
unsigned32 Flags;
uuid_t GatewayUUID;
unsigned32 GID;
unsigned32 GroupPerms;
unsigned32 LinkCount;
unsigned32 Location;
unsigned32 MACSecLabel;
unsigned32 OtherPerms;
unsigned32 SetGIDOnExe;
unsigned32 SetStickyBit;
unsigned32 SetUIDOnExe;
timestamp_t TimeLastRead;
timestamp_t TimeLastWritten;
timestamp_t TimeOfMetadataUpdate;
unsigned32 Type;
unsigned32 UID;
unsigned32 UserPerms;

} ns_Attrs_t;

Account

Specifies opaque accounting information.

ACLOptions

Specifies Access Control List options used when setting the group permissions.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-147
Release 4.2, Revision 1

BitFileId

Specifies the bitfile identifier.

ClassOfService

Specifies the class of service of a file object. This field is not settable.

Comment

Specifies the uninterpreted client supplied ASCII text.

CompositePerms

Specifies the permission to an object after all ACLs have been examined and applied.

DMHandle

Specifies a handle that points back to a DMAP managed object. This field is opaque data to the Name Serv-

er.

.DMHandleLength

Specifies the byte length of DMHandle.

EntryCount

Specifies a read-only field which contains the number of entries contained in a directory. If the object is not

a directory, the value is not defined.

FamilyId

Identifies the fileset family identifier.

FilesetHandle

Specifies a Name Server object handle used to point to the root node of a fileset.

FilesetId

Specifies the fileset identifier that uniquely identifes the fileset an object belongs to.

FilesetRootRSN

Specifies a read-only field which contains the Relative Sequence Number of the root node of this fileset.

FilesetStateFlags

Contains flag bits indicating the state of the fileset. The following constants define the possible states:

NS_FS_STATE_READ Read is permitted.

NS_FS_STATE_WRITE Write is permitted.

NS_FS_STATE_DESTROYED The fileset has been destroyed. Neither reading nor writing

Chapter 2. Client API Functions

2-148 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

will be permitted

NS_FS_STATE_READ_WRITE A combination of READ and WRITE.

NS_FS_STATE_COMBINED A combination of all bit settings above.

FilesetType

Specifies the type of the fileset the attributes are for. This is a read-only field. The following constants de-

fine the fileset types:

NS_FS_TYPE_HPSS_ONLY This fileset is an HPSS-only fileset.

NS_FS_TYPE_ARCHIVED This fileset is a backup copy of some other fileset.

NS_FS_TYPE_DFS_ONLY This fileset is native to some other file system such as DFS.

NS_FS_TYPE_MIRRORED This fileset is a mirrored copy of some other fileset such as a DFS

fileset.

Filesize

Specifies the byte size of a file, directory, or symbolic link object. This field is not settable.

Flags

Specifies a bit vector which contains information that can be expressed in boolean form. The following con-

stants define the bits in this field:

NS_ATTRS_FLAGS_EXTENDED_ACLS

Set to 1 if the object has extended ACL entries. Extended ACL

entries are all entries other than user_obj, group_obj, and

other_obj.

GID

Specifies the principal group identifier.

GroupPerms

Specifies the permissions granted to group members.

LinkCount

Specifies the number of hard links to a file object.

Location

On input, contains the DCE cell identifier of the GROUP_OBJ. On output, it may contain a DCE cell iden-

tifier; however, an output value of zero indicates the local cell.

MACSecLabel

Specifies the Mandatory Access Control Security Label.

OtherPerms

Specifies the permissions granted to ‘other’ clients.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-149
Release 4.2, Revision 1

SetGIDOnExe

For file objects:

0 = do not set GID to owner.

1 = set GID to owner.

SetStickyBit

For file objects:

0 = do not set the sticky bit.

1 = set the sticky bit.

SetUIDonExe

For file objects:

0 = do not set UID to owner.

1= set UID to owner.

TimeLastRead

Specifies the last time the object was accessed.

TimeLastWritten

Specifies the last time the object was updated.

TimeOfMetadataUpdate

Specifies the last time the metadata was updated.

Type

Specifies the ‘type’ of the object:

DIRECTORY_OBJECT directory

FILE _OBJECT file

JUNCTION_OBJECT junction

SYM_LINK_OBJECT symbolic link

HARD_LINK_OBJECT hard link.

This field is not settable

UID

Specifies the User Identifier of the object’s owner.

UserPerms

Specifies the permissions granted to the owner of the object.

Chapter 2. Client API Functions

2-150 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.7. Name Server Fileset Attributes Structure – ns_FilesetAttrs_t

Description

The Name Server fileset attribute structure contains fields for the various attributes (metadata) that the

Name Server maintains for a fileset.

Format

typedef struct {
u_signed64 RetisterBitMap;
unsigned32 ClassOfService;
unsigned32 FamilyId;
ns_ObjHandle_t FilesetHandle;
u_signed64 FilesetId;
unsigned char FilesetName[NS_FS_MAX_FS_NAME_LENGTH];
unsigned32 FilesetType;
uuid_t GatewayUUID;
unsigned32 StateFlags;
unsigned32 SubSystemId;
byte UserData[NS_FS_MAX_USER_DATA];
u_signed64 DirectoryCount;
u_signed64 FileCount;
u_signed64 HardLinkCount;
u_signed64 JunctionCount;
u_signed64 SymLinkCount;

} ns_FilesetAttrs_t;

RegisterBitMap

A bit vector where each bit corresponds to a field in the record.

ClassOfService

The COS service configured for this fileset.

FamilyId

The fileset family identifier. This id is opaque to the Name Server.

FilsetHandle

A Name Server object handle which points to the root node of the fileset.

FilesetId

The unique identifier of this fileset.

FilesetName

The unique human readable fileset name.

FilesetType

Specifies the type of the fileset the attributes are for. This is a read-only field. The following constants de-

fine the fileset types:

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-151
Release 4.2, Revision 1

NS_FS_TYPE_HPSS_ONLY This fileset is an HPSS-only fileset.

NS_FS_TYPE_ARCHIVED This fileset is a backup copy of some other fileset.

NS_FS_TYPE_DFS_ONLY This fileset is native to some other file system such as DFS.

NS_FS_TYPE_MIRRORED This fileset is a mirrored copy of some other fileset such as a DFS

fileset.

GatewayUUID

The identifier of the gateway that processes DMAP requests for the fileset.

StateFlags

The flags that defined the state of the fileset. Valid values include:

NS_FS_STATE_READ The fileset allows reads.

NS_FS_STATE_WRITE The fileset allows writes.

NS_FS_STATE_DESTROYED The fileset allows no access.

SubSystemId

CDS name of the HPSS location server. This field is not currently used.

UserData

Uninterpreted data supplied by the client. This data can be ASCII, binary, or both.

DirectoryCount

The current number of directories in the fileset.

FileCount

The current number of files in the fileset.

HardLinkCount

The current number of hard links in the fileset.

JunctionCount

The current number of junctions in the fileset.

SymLinkCount

The current number of symbolic links in the fileset.

Chapter 2. Client API Functions

2-152 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.8. Name Server Object Handle Structure - ns_ObjHandle_t

Description

The Name Server object handle structure contains information that allows the Name Server to identify the

SFS record where the metadata for the object is stored.

Format

The Name Server object handle structure has the following format:

typedef struct {
unsigned32 ObjId;
unsigned32 FileId;
unsigned char Flags;
unsigned char Pad1;
unsigned char Pad2;
unsigned char Pad3;
unsigned16 Generation;
unsigned char Type;
unsigned char Version;
uuid_t NameServerUUID;

} ns_ObjHandle_t;

ObjId

Specifies a unique Name Server object identifier. (The Relative Sequence Number (RSN) of the SFS record

containing the metadata for the object.)

FileId

If the Type field specifies a hardlink this is the RSN of the SFS record containing the metadata for the orig-

inal file. For all other Types this field is equal to the ObjId.

Flags

Specifies a bit vector whose bits convey additional information about the object handle. The defined bit po-

sitions for the Flags field are:

NS_OH_FLAG_FILESET_ROOTHandle is for the root node of a fileset.

Pad1

Reserved for future use.

Pad2

Reserved for future use.

Pad3

Reserved for future use.

Generation

Specifies a random number used to detect stale object handles.

Type

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-153
Release 4.2, Revision 1

Specifies the ‘type’ of the object: file, directory, junction, symbolic link, or hard link.

Version

Specifies the Name Server version number.

NameServerUUID

Specifies the UUID of the Name Server that issued this object handle.

Chapter 2. Client API Functions

2-154 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.9. Name Server Directory Entry - ns_DirEntry_t

Description

The Name Server directory entry structure defines the contents of a Name Server directory entry.

Format

The Name Server directory entry structure has the following format:

typedef struct DirEntryTag {
ns_ObjHandle_t ObjHandle;
unsigned char Name[HPSS_MAX_FILE_NAME];
unsigned32 ObjOffset;
struct DirEntryTag *Next;
ns_Attrs_t Attrs;

} ns_DirEntry_t;

ObjHandle

Specifies the Name Server object handle of the directory entry.

Name

Specifies the name of the directory entry.

ObjOffset

Specifies the offset of the entry within the directory.

Next

Points to the next directory entry.

Attrs

Specifies attributes of the directory entry.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-155
Release 4.2, Revision 1

2.3.10. Bitfile Volatile and Metadata Attributes - bf_attrib_t

Description

The attributes structure for the bitfile object contains all the volatile and metadata bitfile attributes. These

are parameters relating to a bitfile.

Format

The bitfile attributes structure has the following format:

typedef struct bf_attrib {
u_signed64 CurrentPosition;
signed32 OpenCount;
unsigned32 FamilyId;
bf_attrib_md_t BfAttribMd;

} bf_attrib_t;

CurrentPosition

Specifies the current byte position in the bitfile.

OpenCount

Specifies the current number of clients that have the bitfile open.

FamilyId

Specifies the family identifier for the bitfile.

BfAttribMd

Specifies the structure of bitfile metadata attributes that are stored in the data base.

Chapter 2. Client API Functions

2-156 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.11. Bitfile Volatile and Metadata Extended Attributes - bf_xattrib_t

Description

The attributes structure for the bitfile object contains all the volatile and metadata bitfile extended at-

tributes. These are parameters relating to a bitfile and location of vaild data.

Format

The bitfile extended attributes structure has the following format:

typedef struct bf_xattrib {
u_signed64 CurrentPosition;
signed32 OpenCount;
unsigned32 FamilyId;
bf_sc_attrib_t SCAttrib[HPSS_MAX_STORAGE_LEVELS];
bf_attrib_md_t BfAttribMd;

} bf_xattrib_t;

CurrentPosition

Specifies the current byte position in the bitfile.

OpenCount

Specifies the current number of clients that have the bitfile open.

FamilyId

Specifies the family identifier for the bitfile.

SCAttrib

Specifies the storage class attributes at each valid level in the hierarchy.

BfAttribMd

Specifies the structure of bitfile metadata attributes that are stored in the data base.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-157
Release 4.2, Revision 1

2.3.12. Bitfile Metadata Attributes - bf_attrib_md_t

Description

This structure contains the bitfile attributes metadata. These are parameters relating to a bitfile.

LinkCount is always 1 for a existing bitfile in currrent HPSS release. On one bfs_Bitfile(Open)SetAttrs call,

reverse maps (OwnerRec) can be either added or deleted. Both cannot be accomplished on the same call.

Format

The bitfile attributes metadata structure has the following format:

typedef struct bf_attrib_md {
u_signed64 DataLen;
signed32 ReadCount;
signed32 WriteCount;
signed32 LinkCount;
timestamp_sec_t CreateTime;
timestamp_sec_t ModifyTime;
timestamp_sec_t WriteTime;
timestamp_sec_t ReadTime;
unsigned32 COSId;
unsigned32 NewCOSId;
acct_rec_t Acct;
unsigned32 Flags;
unsigned32 StorageSegMult;
bfs_owner_rec_t OwnerRec;
u_signed64 RegisterBitmap;
unsigned32 CellId;

} bf_attrib_md_t;

DataLen

Specifies the number of bytes of actual data that the bitfile contains.

ReadCount

Specifies the count of the number of times that all or part of the bitfile has been read.

WriteCount

Specifies the count of the number of times that data has been written to the bitfile.

LinkCount

Specifies the number of links to this bitfile by Name Servers. This also indicates how many reverse map

IDs are in the bf_rev_map record for this bitfile.

CreateTime

Specifies the date and time the bitfile was created.

ModifyTime

Specifies the date and time the bitfile was last modified.

WriteTime

Chapter 2. Client API Functions

2-158 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Specifies the date and time when data was last written to the bitfile.

ReadTime

Specifies the date and time when the bitfile was last read.

COSId

Specifies the class of service type (unsigned32) and indicates which of several classes of service the bitfile

is in. This ID references a class of service record that defines the parameters for this particular class of ser-

vice. When changing a file’s COS, this field is used by the hpss_FileSetAttributes function.

NewCOSId

Indicates the new class of service that a file is to be changed to when the client changes the class of service

on a bitfile. When the change has been completed, the value of this field is moved into COSId and this field

is cleared. This field is read only. Use the COSId file to change a file’s COS.

Acct

Specifies the accounting metadata for the bitfile. It includes information needed to charge for data storage,

access, transfers, quotas, etc.

Flags

Contains the flag settings. Not currently used.

StorageSegMult

Storage segment multiple used to adjust size of disk storage segments.

OwnerRec

Defines the reverse map entries for a bitfile and indicates which ones are active or NULL.

RegisterBitmap

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-159
Release 4.2, Revision 1

Used to indicate the attributes that the SSM wants to receive notifications for when the attributes change.

BFS_REG_OPEN_COUNT

BFS_REG_DATA_LEN

BFS_REG_READ_COUNT

BFS_REG_WRITE_COUNT

BFS_REG_LINK_COUNT

BFS_REG_CREATE_TIME

BFS_REG_MODIFY_TIME

BFS_REG_WRITE_TIME

BFS_REG_READ_TIME

BFS_REG_OWNER_REC

BFS_REG_COS_ID

BFS_REG_ACCT

BFS_REG_SECURITY

This vector is also set to indicate which fields in the attributes structure have changed on notify requests.

If the REG_OWNER_REC field is set, then the SetRevMapFlags field in the bf_attrib struct will be set to in-

dicate which reverse map entries have changed.

CellId

The client DCE cell identifier.

Chapter 2. Client API Functions

2-160 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.13. Bitfile Owner Record - bfs_owner_rec_t

Description

This structure defines the reverse map entries for a bitfile and indicates which ones are active or NULL.

Format

The bitfile owner record has the following format:

typedef struct bfs_owner_rec {
signed32 RevMapCount;
unsigned32 Pad;
rev_map_t RevMap[BFS_NUM_REV_MAPS];

} bfs_owner_rec_t;

typedef struct rev_map {
byte RevMapId[BFS_REV_MAP_LEN];

} rev_map_t;

BFS_REV_MAP_LEN = 32;

RevMapCount

Specifies the number of valid reverse map entries.

Pad

Specifies the pad for 64-bit alignment.

RevMap[BFS_NUM_REV_MAPS]

Specifies the array of opaque reverse mapping fields supplied by a client.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-161
Release 4.2, Revision 1

2.3.14. Bitfile Server Storage Class Attributes - bf_sc_attrib_t

Description

This structure contains storage class information for a specific storage hierarchy level at which the specified

bitfile exists.

Format

The Bitfile Server storage class attributes have the following format:

typedef struct bf_sc_attrib {
bf_vv_attrib_t VVAttrib[BFS_MAX_VV_TO_RETURN_AT_LEVEL];
unsigned32 NumberOfVVs;
u_signed64 BytesAtLevel;
unsigned32 OptimumAccessSize;
unsigned32 StripeWidth;
u_signed64 StripeLength;
unsigned32 Flags;

} bf_sc_attrib_t;

VVAttrib

An array of virtual volume on which bitfile segments are contained.

NumberOfVVs

Specifies the number virtual volume entries in the array.

BytesAtLevel

Specifies the amount of data that exist at this level (in bytes).

OptimumAccessSize

Specifies the optimum access size of the storage class.

StripeWidth

Specifies the stripe width of the storage class.

StripeLength

Specifies the stripe length of the storage class.

Flags

The flags that defined the state of the fileset. Valid values include:

BFS_BFATTRS_LEVEL_IS_DISK This is a disk storage level.

BFS_BFATTRS_LEVEL_IS_TAPE This is a tape storage level.

BFS_BFATTRS_DATAEXIST_AT_LEVEL Data for the bitfile exists at this level.

BFS_BFATTRS_ADDITIONAL_VV_EXIST Data at this level is contained on more than

BFS_MAX_VV_TO_RETURN_AT_LEVEL virtual volumes.

Chapter 2. Client API Functions

2-162 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.15. Bitfile Server Virtual Volume Attributes - bf_vv_attrib_t

Description

This structure contains Bitfile Server virtual volume attributes for a specific storage level in the hierarchy.

Format

The bitfile virtual volume attributes have the following format:

typedef struct bf_vv_attrib {
hpssoid_t VVID;
signed32 RelPosition;
pv_list_t *PVList;

} bf_vv_attrib_t;

VVID

Specifies the virtual volume identifier.

RelPosition

Specifies the relative start position of first bitfile segment on this virtual volume.

PVList

A conformant array of physical volume attributes.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-163
Release 4.2, Revision 1

2.3.16. Storage Server Physical Volume Attributes - pv_list_element_t

Description

This structure contains physical volume location information for specified physical volume.

Format

The storage server physical volume attributes have the following format:

typedef struct pv_list_element {
char Name[HPSS_PV_NAME_SIZE];
unsigned32 Flags;

} pv_list_element_t;

Name

Specifies the physical volume name.

Flags

Specifies the location of the physical volume. This field will be zero if the physical volume is in the robot,

or the bit corresponding to the value PV_ON_SHELF will be set if the physical volume has been shelved.

Chapter 2. Client API Functions

2-164 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.17. Storage Server Physical Volume Attributes Conformant Array -
pv_list_t

Description

The pv_list_t structure describes a template for a conformant array of Storage Server Physical Volume At-

tribute elements.

Format

The storage server physical volume attribute conformant array has the following format:

typedef struct pv_list {
signed32 Length;
pv_list_element_t* List[*];

} pv_list_t;

Length

Specifies the number of physical volume attribute elements in the array.

List

A conformant array of physical volume attribute elements.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-165
Release 4.2, Revision 1

2.3.18. Bitfile Server Statistics - bfs_stats_t

Description

This structure contains statistical information which includes a count of stages, migrates, purges, and dele-

tions. In addition, the structure includes a timestamp indicating when the counts began.

Format

The Bitfile Server statistics have the following format:

typedef struct bfs_stats {
unsigned32 StageCount;
unsigned32 MigrationCount;
unsigned32 PurgeCount;
unsigned32 DeleteCount;
timestamp_sec_t TimeLastReset;

} bfs_stats_t;

StageCount

Specifies the number of stages which have occurred since the last reset.

MigrationCount

Specifies the number of migrations which have occurred since the last reset.

PurgeCount

Specifies the number of purges which have occurred since the last reset.

DeleteCount

Specifies the number of deletes which have occurred since the last reset.

TimeLastReset

Specifies the time of the last reset (all counts were set to 0).

Chapter 2. Client API Functions

2-166 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.19. Account Record - acct_rec_t

Description

The account record contains the HPSS account identifier number.

Format

The API configuration structure has the following format:

typedef unsigned32 acct_rec_t;

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-167
Release 4.2, Revision 1

2.3.20. API Configuration Structure – api_config_t

Description

The API configuration structure contains values that control optional features of the Client API configura-

tion.

Format

The API configuration structure has the following format:

typedef struct api_config {
long Flags;
long DebugValue;
long TransferType;
long NumRetries;
int BusyDelay;
int BusyRetries;
int TotalDelay;
int LimitedRetries;
long MaxConnections;
int ReuseDataConnections;
int UsePortRange;
long RetryStageInp;
int DMAPWriteUpdates;
char ServerName[HPSS_MAX_DCE_NAME];
char DescName[HPSS_MAX_DESC_NAME];
char PrincipalName[HPSS_MAX_PRINCIPAL_NAME];
char KeytabPath[HPSS_MAX_PATH_NAME];
char DebugPath[HPSS_MAX_PATH_NAME];
char HostName[HPSS_MAX_HOST_NAME];
char RegistrySiteName[HPSS_MAX_DCE_NAME];

} api_config_t;

Flags

Contains a bitmap of configuration flags. Valid values include:

Chapter 2. Client API Functions

2-168 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

API_INIT_HSEC Client API should perform HPSS security initialization.

API_INIT_CONN Client API should perform connection initialization.

API_INIT_TRPC Client API should perform TRPC initialization.

API_ENABLE_LOGGING If logging compiled into Client API library, perform HPSS logging

on errors.

API_GLOBAL_FILETABLE Indicates whether Client API was built using global or per-thread

file table (this flag is informational only - it cannot be set using

hpss_SetConfiguration).

API_USE_ENV Modify configuration based on environment variables.

API_DISABLE_CROSS_CELL If set, this flag prevents the Client API from contacting any servers

outside of the local cell. Once set, this flag cannot be unset. This

flag is set automatically when FTP or NDCG log-in without

security.

API_DISABLE_JUNCTIONS If set, this flag prevents the Client API from processing any

requests which require it to traverse a junction. Once set, this flag

cannot be unset. NFS will always set this flag explicitly.

DebugValue

If zero, indicates that Client API will not send debug messages to an output file; otherwise messages will

be sent (note that all debug messages are conditionally compiled into the library).

TransferType

Indicates what data transfer mechanism is to be used for transfers handled by the Client API. Valid values

include:

API_TRANSFER_TCP Use TCP/IP

API_TRANSFER_IPI3 Use IPI-3 over HIPPI

NumRetries

Used to control the number of retries to attempt when an operation fails. Currently this class of operation

includes library initialization and communication failures. A value of zero indicates that no retries are to be

performed and a value of negative one indicates that operation will be retried until successful.

BusyDelay

Used to control the number of seconds to delay between retry attempts.

BusyRetries

Used to control the number of retries to be performed when a request fails because the Bifile Server does

not currently have an available thread to handle that request. A value of zero indicates that no retries are

to be performed. A value of negative one indicates that retries should be attempted until either the request

succeeds of fails for another reason.

TotalDelay

Used to control the number of total seconds to continue retrying a request.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-169
Release 4.2, Revision 1

LimitedRetries

Used to control the number of retry attempts for limited retry type errors.

MaxConnections

Maximum number of connections for use by the HPSS connection management service.

ReuseConnections

Used to control whether TCP/IP connections are to be left as long as a file is opened or are to be closed after

each read or write request. A non-zero value will cause connections to remain open, while a zero will cause

connections to be closed.

UsePortRange

Used to control whether the HPSS Mover(s) should use the configured port range when making TCP/IP

connections for read and write requests. A non-zero value will cause the Mover(s) to use the port range. A

value of zero will cause the Mover(s) to allow the operating system to select the port number.

RetryStageInp

Used to control whether retries are attempted on opens of files in a Class of Service that is configured for

background staging on open. A non-zero value indicates that open which would return -EINPROGRESS to

indicate the file is being staged will be retried. A value of zero indicates that the -EINPROGRESS return

code will be returned to the client.

DMAPWriteUpdates

Controls the frequency of cache invalidates that are issued to the XDSM file system.

ServerName

Name to use when initializing HPSS security services.

DescName

Name to use when generating HPSS log messages.

PrincipalName

DCE principal name to use for HPSS security initialization.

KeytabPath

Pathname of the DCE security keytab file.

DebugPath

If generation of debug message is enabled, the pathname of the file to which log messages will be directed.

Special cases are "stdout" and "stderr".

HostName

Specifies the interface name to use for TCP/IP communications.

RegistrySiteName

Specifies the security registry used when inserting security information into connection binding handles.

Chapter 2. Client API Functions

2-170 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.21. Name Server ACL Conformant Array - ns_ACLConfArray_t

Description

The ns_ACLConfArray_t structure describes a template for a conformant array of Name Server ACL en-

tries.

Format

The ns_ACLConfArray_t structure has the following format:

typedef struct {
signed32 Length;
ns_ACLEntry_t ACLEntry[*];

} ns_ACLConfArray_t;

Length

Specifies the number of ACL entries in the array.

ACLEntry

The array of ACL entries.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-171
Release 4.2, Revision 1

2.3.22. Name Server Access Control List Entry - ns_ACLEntry_t

Description

The ns_ACLEntry_t structure describes a Name Server ACL entry. Each entry contains information such

as the type of entry (i.e., for a group or individual user), the identity and location of the user or group and

the permissions that are allowed.

Format

The ns_ACLEntry_t structure has the following format:

typedef struct ACLEntryTag {
unsigned char EntryType;
unsigned char Perms;
unsigned16 ExpirationDate;
unsigned32 EntryId;
unsigned32 Location;
struct ACLEntryTag *Next;

} ns_ACLEntry_t;

EntryType

Identifies the type of this ACL entry. These correspond to the DFS ACL tag types: user_obj,

user_obj_delegate, user, user_delegate, foreign user, foreign_user_delegate, group_obj,

group_obj_delegate, group, group_delegate, foreign_group, foreign_group_delegate, other_obj,

other_obj_delegate, foreign_other, foreign_other_delegate, any_other, any_other_delegate, mask_obj, or

unauthenticated.

Perms

Specifies the permissions or access rights.

ExpirationDate

Currently not used.

EntryId

Depending on the EntryType, it can specify an identifier (usually a UID or GID).

Location

Specifies the identifier of the DCE cell.

Next

Points to the next ACL Entry.

Chapter 2. Client API Functions

2-172 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.23. Global Fileset Entry Structure – hpss_global_fsent_t

Description

The global fileset entry structure contains global fileset information.

Format

The global fileset entry structure has the following format:

typedef struct {

u_signed64 FilesetId;

unsigned char FilesetName[HPSS_MAX_FS_NAME];

uuid_t GatewayUUID;

uuid_t NameServerUUID;

} hpss_global_fsent_t;

FilesetId

The unique fileset identifier.

FilesetName

The unique name of the fileset.

GatewayUUID

The identifier of the DMAP gateway that manages the fileset.

NameServerUUID

The identifier of the Name Server that manages the fileset.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-173
Release 4.2, Revision 1

2.3.24. Name Server Fileset Attribute Bits – ns_FilesetAttrBits_t

Description

Bits specifying the Name Server fileset attribute bits to retrieve or set.

Format
typedef u_signed64 ns_FilesetAttrBits_t;

Chapter 2. Client API Functions

2-174 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.25. Name Server Object Attribute Bits – ns_FilesetAttrBits_t

Description

Bits specifying the Name Server object attributes to retrieve or set.

Format
typedef u_signed64 ns_AttrBits_t;

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-175
Release 4.2, Revision 1

2.3.26. Purge Lock Flag - purgelock_flag_t

Description

Flag specifying whether a file should have its purgelock status set or cleared.

Format
typedef enum {

PURGE_UNLOCK = 0, /* purge unlock the file */

PURGE_LOCK /* purge lock the file */

} purgelock_flag_t;

Chapter 2. Client API Functions

2-176 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.27. API Name Specification – api_namespec_t

Description

The API Name Specification structure is used for converting HPSS cell and principal ids to/from their as-

sociated names. The API Name specification structure contains the translation type along with the prin-

cipal and cell information that is to be converted.

Format
typedef struct api_namespec {

namespec_type_t Type;

int Id;

int CellId;

char Name[HPSS_MAX_DCE_NAME];

char CellName[HPSS_MAX_DCE_NAME];

} api_namespec_t

Type

The type of translation that is requested. The valid values are:

NAMESPEC_CELL - Translate cell information only

NAMESPEC_USER - Translate user and cell information

NAMESPEC_GROUP - Translate group and cell information

NAMESPEC_SKIP - Do not translate this entry

Id

The uid or gid of the principal.

CellId

The HPSS cell id where the principal resides.

Name

The name of the principal.

CellName

The name of the cell where the principal resides.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-177
Release 4.2, Revision 1

2.3.28. Bitfile Callback Address – bfs_callback_addr_t

Description

The Bitfile Callback Address structure contains the host information, port number and an identification

number which facilitates call backs during a stage process.

Format
typedef struct bfs_callback_addr {

unsigned32 addr;

unsigned16 port;

unsigned16 family;

signed32 id;

} bfs_callback_addr_t;

addr

Host address

port

Port number

family

Address family

id

Id to be returned during a callback.

Chapter 2. Client API Functions

2-178 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.29. HPSS Directory Entry – hpss_dirent_t

Description

The HPSS directory entry structure contains the directory’s name and a handle to the Name Server for this

directory. In addition, it contains the offset of the next directory entry.

Format
typedef struct hpss_dirent {

unsigned32 d_offset;

ns_ObjHandle_t d_handle;

unsigned16 d_reclen;

unsigned16 d_namelen;

char d_name[HPSS_MAX_FILE_NAME];

} hpss_dirent_t

d_offset

The offset of the next directory entry.

d_handle

The handle to the Name Server for the directory.

d_reclen

The record length of the directory.

d_namelen

The number of characters in the directory name.

d_name

The name of the directory.

Chapter 2. Client API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 2-179
Release 4.2, Revision 1

2.3.30. HPSS Security User Credentials – hsec_UserCred_t

Description

The HPSS Security User Credentials structure contains information about the user credentials. This infor-

mation can only be obtained by an authorized client using HPSS security mechanisms.

Format
typedef struct hsec_UserCred {

SecPWent_t SecPWent;

uuid_t SecUuid;

unsigned32 SecLabel;

acct_rec_t DefAccount;

acct_rec_t CurAccount;

unsigned32 NumGroups;

long AltGroups[HPSS_NGROUPS_MAX];

unsigned32 DCECellId;

} hsec_UserCred_t

SecPWent

Security information about the principal.

SecUuid

Secure Unix user identification number.

SecLabel

Secure label that is associated with the SecUuid.

DefAccount

The accounting code that is used when a current account code has not been specified.

CurAccount

When a current accounting code is specified, this code is applied to new files or directories.

NumGroups

The number of groups to which this principal is a member.

AltGroups

An array of groups to which this principal is a member.

DCECellId

The DCE Cell Id where the principal resides

Chapter 2. Client API Functions

2-180 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.3.31. Security Password Entry – SecPWent_t

Description

The Security Password Entry structure provides information needed to lookup a principal in the HPSS se-

curity registry.

Format
typedef struct hsec_PWent {

char Name[HPSS_MAX_USER_NAME];

unsigned32 Uid;

unsigned32 Gid;

} SecPWent_t

Name

Name of the principal

Uid

User id of the principal

Gid

Group id of the principal

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (IOR)

3.1. I/O Descriptor Purpose

The I/O Descriptor (IOD) is used to describe I/O requests within HPSS. The IOD contains the informa-

tion required to describe the function requested and the data sources and sinks for the request. The IOD is

a common structure that will be passed between Client API and Bitfile Server, Bitfile Server and Storage

Server, Storage Server and Mover, as well as Physical Volume Library and Mover.

In the general case of an HPSS client data transfer request, the Client API will send an IOD which

describes the client data address(es) for the transfer, as well as the piece(s) of the HPSS file requested. The

HPSS components will perform a series of mappings on the HPSS side, until the actual data source or sink

location (for a client read or write request, respectively) is determined. The Mover(s) will then use the cli-

ent addressing information to perform the data transfer.

For release 3, a capability is provided for the mover to reply with listen port addressing information as an

intermediate reply. Also, a flag value is provided to indicate a Mover-to-Mover protocol, which provides

transport selection and flow control between movers.

3.2. I/O Reply Purpose

The I/O Reply (IOR) is used to return the state of a request at a particular moment. If the request has com-

pleted (due to correct completion or an unrecoverable error), the IOR will contain the final completion sta-

tus of the request.

An IOR will be returned at the completion of a request from each HPSS component that received an IOD

with the request. An IOR will also be returned as the result of a request to query the status of a request,

from each HPSS component that received an IOD with the initial request.

3.3. I/O Descriptor Components

The I/O Descriptor consists of these major parts:

• Request Description

• Source Descriptor List

• Sink Descriptor List

The Request Description contains information describing the request to be performed. This information

includes the function (e.g., read, write, set position), any flags and/or subfunction information required to

completely define the operation, and any other information required by the operation which is not a

description of the data source or sink.

The Source Descriptor List contains information which describes the source of a data transfer.

The Sink Descriptor List contains information which describes the sink of a data transfer.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

3.4. I/O Reply Components

The I/O Reply consists of these major parts:

• Request State

• Source State List

• Sink State List

The Request State contains information describing the status of the request as a whole. This information

will indicate whether the request is in progress, completed, waiting on a resource, encountered an unre-

coverable error, etc.

The Source State List contains information describing the status of each source descriptor involved in the

I/O operation. Information will include overall status (e.g., complete, in progress), device positioning

information (if applicable), listen addresses (if applicable) and the number of bytes transferred.

The Sink State List contains information describing the status of each sink descriptor involved in the I/O

operation. Information will include overall status (e.g., complete, in progress), device positioning infor-

mation (if applicable), listen addresses (if applicable) and the number of bytes transferred.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-3
Release 4.2, Revision 1

3.5. Data Definitions

This section describes key internal data definitions and all externally used data definitions for the IOD and

IOR.

3.5.1. I/O Descriptor (IOD) - IOD_t

Description

The IOD is a structure that is used to describe I/O requests. This structure contains parameters to describe

the function requested and the sources and sinks for the operation.

Format

The IOD has the following format:

typedef struct IOD {
signed32 RequestID;
signed32 Function;
unsigned32 Flags;
requestspec_t *ReqSpecInfo;
signed32 SrcDescLength;
signed32 SinkDescLength;
srcsinkdesc_t *SrcDescList;
srcsinkdesc_t *SinkDescList;

} IOD_t;

RequestID

This field contains a request identifier used to distinguish requests from a given client.

Function

This field indicates the type of I/O operation being requested. The following values are valid for this field:

IOD_READ Data is to be transferred to the initiator from the responder.

IOD_WRITE Data is to be transferred from the initiator to the responder.

IOD_DEVICESPECIFIC Device specific request (e.g., Write Tapemark).

IOD_GETDEVICEATTR Query device attributes (Storage Server / Mover only).

IOD_SETDEVICEATTR Set device attributes (Storage Server / Mover only).

IOD_ABORT Abort outstanding request (Storage Server / Mover only).

Flags

This field is a bit vector used to alter processing of the request. The possible bits that may be set are:

NO_LABEL_CHECK Override the default label check processing.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

REPLYWHENREADY Requests that the server ready listen ports and reply with

addressing information to those ports after they are established.

HOLD_RESOURCES For device specific and device attribute requests, indicates that

the device is to be held open by the mover task after completion

of the request. Otherwise, the device is freed when the request is

completed.

LAST_IN_XFER For read and write requests via IPI-3 transfers, indicates that the

IOD contains the last byte in the client transfer.

ReqSpecInfo

This structure contains information pertaining to information specific to the type of request.

typedef struct requestspec {
signed32 SubFunction;
signed32 Argument;
signed32 DeviceID;
u_signed64 Count;
u_signed64 SelectionFlags;
struct {

signed32InfoType;
union {

signed32Reserved;
char DisplayBuffer[16];
devdesc_attr_tDeviceAttr;
char VolumeID[16];
address_tReplyAddr;

} ReqInfo_u;
} ReqInfo_s;

} requestspec_t;

SubFunction

This field indicates the device specific function to be performed. The following values are valid for

this field:

DEVICE_LOAD Load a physical volume into a drive.

DEVICE_UNLOAD Unload a physical volume from a drive.

DEVICE_FLUSH Ensure data previously written is flushed to the media.

DEVICE_WRITETM Write tape mark (tape only).

DEVICE_LOADDISPLAY load message to device’s display area.

DEVICE_READLABEL Read media label.

DEVICE_WRITELABEL Write media label.

DEVICE_CLEAR Zero portion of the media (disk only).

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-5
Release 4.2, Revision 1

Argument

This field contains any additional information that is required to perform the requested operation.

This field varies based on request and is used internally.

DeviceID

This field describes the device to which the requested operation is to be performed. This field is also

used to specify the request ID for request status queries.

Count

This field contains the number of iterations to perform of the requested operation.

SelectionFlags

This field describes the fields within the DeviceAttr field that are to be updated during a device set

attributes request.

ReqInfo_s

Generated by the DCE IDL compiler, this structure contains a typed union used to pass request

specific information.

InfoType

This value will indicate what information is included in ReqInfo_u. Valid values include:

INFO_NONE Information union is unused for this request.

INFO_LOADDISPLAY Information is a buffer to be output on device display

area for DEVICE_LOADDISPLAY requests.

INFO_DEVICEATTR Information is a device attribute structure for

DEVICE_SETDEVICEATTR requests.

INFO_VOLUMEID Information is a volume label.

INFO_REPLYADDR Information is a reply network address.

ReqInfo_u

This union contains the specific information required to complete the requested operation.

The union elements include:

Reserved

This field is a place holder for requests that do not require any request specific

information.

DisplayBuffer

This field contains the character string to be output on the indicated devices

display area.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

DeviceAttr

This structure is used for the Mover’s get device characteristics and set device char-

acteristics. See the Mover design document for further details.

VolumeID

This field contains the volume label to be written during a write label request.

ReplyAddr

This field contains the address to which the mover should reply with listen port

addressing information.

SrcDescLength

This field contains the number of items in SrcDescList.

SinkDescLength

This field contains the number of items in SinkDescList.

SrcDescList

This list of structures defines the sources of a data transfer. See the description of the source/sink descrip-

tor, below.

SinkDescList

This list of structures defines the sinks of a data transfer. See the description of the source/sink descriptor,

below.

3.5.2. Source/Sink Descriptor - srcsinkdesc_t

Description

The source/sink descriptor contains information describing a contiguous segment of data within a

request. The structure contains addressing information, which varies depending on which module is cur-

rently handling the request.

Format

The Source/Sink Descriptor has the following format:

typedef struct srcsinkdesc {
unsigned32 Flags;
u_signed64 Offset;
u_signed64 Length;
address_t SrcSinkAddr;
struct srcsinkdesc *Next;

signed32 ServerDefined;
} srcsinkdesc_t;

Flags

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-7
Release 4.2, Revision 1

This field contains flags which affect the portion of the request defined by this descriptor.

HOLD_RESOURCES When set, resources are not freed at the completion of the current

request. At the Storage Server level, this bit may be used to keep

removable media mounted across data access requests; at the

Mover level this bit may be used to keep network connections or

devices open across requests.

CONTROL_ADDR When set, use mover protocol to perform data transfer. The

address information contained in this source/sink descriptor will

be the peer mover listen port addressing information. Note that

for striped addresses, this flag must be set in the stripe address

entry itself.

XFER_RESPONDER When set, indicates that the client is requesting to be the responder

for the part of the data transfer corresponding to this descriptor.

This has consequences for IPI-3 transfers that may involve third

party data movement directly between a device and client.

XFEROPT_IP When set, indicates that the client is capable of transferring data

using TCP/IP.

XFEROPT_IPI3 When set, indicates that the client is capable of transferring data

using IPI-3 over HIPPI.

XFEROPT_SHMEM When set, indicates that the client is capable of transferring data

using a shared memory segment.

USE_PORT_RANGE When set, indicates that the Mover should use the configured

TCP/IP port range when making connections to the client.

LAST_SEG_WRITE When set, indicates that the write operation is the last that will be

written to the tape storage segment. The Tape Storage Server and

Mover use this flag to enhance performance by writing tape marks

and advancing to the next tape section after transferring the data,

rather than doing these steps in a separate tape write operation.

Offset

This field contains the offset within the request (described by the IOD) at which the data described by this

source/sink descriptor begins. This field will be used in determining the data tag and coordinating the

source and sink lists.

Length

The length of the data, in bytes, described by this source/sink descriptor.

SrcSinkAddr

This field contains addressing information for the data described by this source/sink descriptor. See the

description of the address structure, below.

Next

This field contains a pointer to the next descriptor in the source or sink list. This field is necessary for use

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

by the DCE encoding code.

ServerDefined

This field contains a value, which is provided by the client, which will be returned upon completion of the

request. The receiving server does not examine this field in any way.

3.5.3. Address Structure - address_t

Description

The address structure contains addressing information that will be included in the source/sink descriptor

to define the sources and sinks of data transfers. The structure contains a union of possible types of

addresses; which addressing is used varies depending on the configuration (primarily for network

addressing) and which HPSS component is acting on the structure.

Format

The Address Structure has the following format:

typedef struct address {
signed32Type;
union {

netaddress_t NetAddr;
ipiaddress_t IPIAddr;
piofsaddress_t PIOFSAddr;
fileaddress_t FileAddr;
ssegaddress_t SSegAddr;
vvaddress_t VVolAddr;
pvaddress_t PVolAddr;
devaddress_t DevAddr;
memaddress_t MemAddr;
stripeaddress_t StripeAddr;
clientfileaddress_t ClientFileAddr;
shmaddress_t ShmAddr;
lftaddress_t LFTAddress;
} Addr_u;

} address_t;

Type

This field indicates the type of address contained in Addr_u. Values are:

NET_ADDRESS TCP/IP

IPI_ADDRESS IPI-3

PIOFS_ADDRESS PIOFS file

FILE_ADDRESS bitfile

SSEG_ADDRESS Storage segment

VVOL_ADDRESS virtual volume

PVOL_ADDRESS physical volume

DEVICE_ADDRESS device

STRIPE_ADDRESS stripe

MEMORY_ADDRESS memory buffer

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-9
Release 4.2, Revision 1

CLIENTFILE_ADDRESS client file

SHM_ADDRESS shared memory segments

LFT_ADDRESS local file transfer

NetAddr

This structure contains IP addressing information, and will be primarily used as the addressing informa-

tion that the Mover must use to connect to the client mover. The structure has the following format:

typedef struct netaddress {
unsigned32SockTransferID;
struct {

unsigned32 addr;
unsigned16 port;
unsigned16 family;

} SockAddr;
u_signed64SockOffset;

} netaddress_t;

SockTransferID

This field contains the transfer ID which will be used in the data tag when the Mover connects to

the client mover for device transfers. It will be used to identify and verify the data being

transferred.

SockAddr

This field contains the IP address information as usually represented by the standard sockaddr

structure. It identifies the address to which the Mover will connect to perform the data transfer. The

fields in this structure directly correspond to the fields in the standard structure and are assumed

to be in network byte order.

SockOffset

This field contains the offset to be used in the data tag when communicating with the client mover

to perform the data transfer. If the logical offset within the entire request is enough information,

this field may not be necessary.

IPIAddr

This field contains IPI-3 addressing information. It will be used for clients or devices which are using IPI-

3 data transfer protocols. The structure has the following format:

typedef struct ipiaddress {
unsigned32IPI3TransferID;
struct {

signed16 Interface;
char Name[32];

}IPI3Addr;
u_signed64IPI3Offset;

} ipiaddress_t;

IPI3TransferID

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

This field contains the transfer ID which will be used in the IPI-3 header for the data described by

this source/sink descriptor.

IPI3Addr

This field contains the IPI-3 addressing information necessary to perform the data transfer. The

subfields include:

Interface

This field contains the IPI-3 interface to be used for the transfer (e.g., “IPI3_HIPPI”).

Name

This field contains the name of the client machine (used to look up the correct i-field in the

IPI-3 configuration).

IPI3Offset

This field contains the offset to be used in the IPI-3 header for the data described by this source/

sink descriptor.

PIOFSAddr

This field contains the information necessary to describe a piece of a logical partition of a PIOFS file. The

structure has the following format:

typedef struct piofsaddress {
u_signed64 Offset;
unsigned32 Flags;
unsigned32 Perms;
unsigned32 Vbs;
unsigned32 Vn;
unsigned32 Hbs;
unsigned32 Hn;
unsigned32 SubFile;
unsigned32 ChkptFlag;
char Name[255];

} piofsaddress_t;

Reference Installing, Managing, and Using the IBM AIX Parallel I/O File System for details of this

structure.

Offset

This field contains the offset within the PIOFS subfile.

Flags

This field contains flags which affect the operation of PIOFS import/export operations.

Perms

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-11
Release 4.2, Revision 1

This field contains the permissions to be used when opening the PIOFS file.

Vbs

This field contains the PIOFS vertical block size.

Vn

This field contains the number of vertical partitions within the PIOFS subfile.

Hbs

This field contains the PIOFS horizontal block size.

Hn

This field contains the number of horizontal partitions within the PIOFS subfile.

SubFile

This field contains the PIOFS subfile identifier.

ChkptFlag

This field indicates whether PIOFS will checkpoint while performing the import or export.

Name

This field contains the name of the PIOFS file.

FileAddress

This field contains information which describes a contiguous piece of an HPSS bitfile. This information will

be sent by the Client API to the Bitfile Server with a client read or write request. The Bitfile Server will map

this information into a series of logical segment addresses. This structure has the following format:

typedef struct fileaddress {
hpss_object_handle_t BitFileHandle;
u_signed64 BitFileOffset;

} fileaddress_t;

BitFileHandle

This field contains the open bitfile handle for which this request applies.

BitFileOffset

This field contains the offset into the bitfile at which the data described by the source/sink

descriptor begins.

SSegAddr

This structure contains storage segment addressing information. It will be mapped into virtual volume

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

addressing information. The structure has the following format:

typedef struct ssegaddress {
hpssoid_t SSegID;
u_signed64 SSegOffset;

} ssegaddress_t;

SSegID

This field contains the storage segment ID.

SSegOffset

This field contains the offset, in bytes, within the storage segment at which the data begins.

VVolAddr

This structure contains virtual volume addressing information. The Storage Server will map this informa-

tion into physical volume addressing information. The structure has the following format:

typedef struct vvoladdress {
hpssoid_t VVolID;
positiondesc_t VVolPosition;

} vvoladdress_t;

VVolID

This field contains the virtual volume ID.

VVolPosition

This field contains the position within the virtual volume at which the data begins. See the Mover

design document for further details.

PVolAddr

This structure contains physical volume addressing information. The Storage Server will map this infor-

mation into device addressing information and pass that on to the appropriate Mover. The structure has

the following format:

typedef struct pvoladdress {
char PVolName[HPSS_PV_NAME_SIZE];
positiondesc_t PVolPosition;

} pvoladdress_t;

PVolName

This field contains the physical volume name.

PVolPosition

This field contains the position on the physical volume at which the data begins. See the Mover

design document for further details.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-13
Release 4.2, Revision 1

DevAddr

This structure contains device addressing information. The Mover uses this information to access the

requested data. The structure has the following format:

typedef struct devaddress {
unsigned32 Flags;
signed32 DeviceID;
signed32 BlockSize;
signed32 BlocksBetweenTMs;
char VolumeID[HPSS_PV_NAME_SIZE];
positiondesc_t DevicePosition;

} devaddress_t;

Flags

This field contains values which alter the way the device is handled. Valid values include (note that

only one of the volume type flags may be specified - i.e., that portion of the Flags field is NOT a bit

vector):

MVR_DEV_HPSS_VOL Indicates that the media loaded on the device

is in HPSS format.

MVR_DEV_UNITREE_VOL Indicates that the media loaded on the device

is in UniTree format.

MVR_DEV_VOL_USE_BLK_HDRS For UniTree formatted media only, indicates

that the tape does not include the per block

tape headers.

DeviceID

This field contains the device ID.

BlockSize

This field contains the block size, in bytes, to use during write requests.

BlocksBetweenTMs

This field contains the number of blocks to be written between tape marks for this request.

VolumeID

This field contains the volume label for which this request applies. This value is used to check that

the expected media is loaded on the requested device.

DevicePosition

This field contains device positioning information describing the location on the device that the

data begins. See the Mover design document for further details.

MemAddr

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

This structure contains information describing a client memory address. The structure has the following

format:

typedef struct memaddress {
char *MemoryPtr;

} memaddress_t;

MemoryPtr

This field contains the address of the client's memory buffer.

ClientFileAddr

This structure contains information describing data in a file as represented through the Client API. The

structure has the following format:

typedef struct clientfileaddress {
signed32 FileDes;
u_signed64 FileOffset;

} clientfileaddress_t;

FileDes

This field contains the Client API file descriptor, as returned from hpss_Open. See section 2.1.28

for further details.

FileOffset

This field contains the file offset at which the request begins.

ShmAddr

This structure contains information describing a shared memory segment address. The structure has the

following format:

typedef struct shmaddress {
unsigned32 Flags;
unsigned32 ShmID;
unsigned32 ShmOffset;

} shmaddress_t;

Flags

This field contains flags which affect the handling of this address. Valid values include:

SHM_COPY_DATA indicates that the mover should copy data to or from the shared

memory segment (i.e., do not perform device I/O directly from

the shared memory segment).

ShmID

This field contains the shared memory segment identifier.

ShmOffset

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-15
Release 4.2, Revision 1

This field contains the offset within the shared memory segment at which the client data begins

LFTAddress

This structure contains information describing a local file address. The structure has the following format:

typedef struct lftaddress {
u_signed64 Offset;
unsigned32 Flags;
unsigned32 Uid;
unsigned32 Gid;
unsigned32 CellId;
char PathName[HPSS_MAX_PATH_NAME];

} lftaddress_t;

Offset

This field contains the offset within the file at which the client data begins.

Flags

This field contains flags which affect the handling of this address.

 Currently there are no defined flags for this address type.

Uid

This field contains the client user identifier .

Gid

This field contains the client group identifier.

CellId

This field contains the client DCE Cell identifier.

PathName

This field contains the path name of the file that will be used for the data transfer.

StripeAddr

This structure contains information that describes data striped across a number of units (either devices or

network addresses). The structure is intended to allow description of striped data without enumerating

each piece of data which makes up the request. The structure has the following format:

typedef struct stripeaddress {
u_signed64 BlockSize;
u_signed64 StripeWidth;
signed32 AddrListLength;
unsigned32 Flags;
straddress_t Addr;
struct stripeaddress_t*Next;

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

} stripeaddress_t;

BlockSize

This field contains the amount of contiguous data, in bytes, that is written to each member of the

stripe group.

StripeWidth

This field contains the number of elements that make up the stripe group. The total amount of data

written in one stripe is represented by BlockSize * StripeWidth.

AddrListLength

This field contains the number of addresses contained in the stripe address list. Valid values are 1

(used when passed to a Mover controlling one device in a device stripe) and StripeWidth (used to

describe the entire stripe group; usually this will be provided by the initiating end of a transfer to

supply the list of available addresses to which the responder must connect to perform the data

transfer).

Flags

This field contains values that alter the processing of this address. Valid values include:

XFER_RESPONDER When set, indicates that the client is requesting to be the

responder for the part of the data transfer corresponding to this

address. This has consequences for IPI-3 transfers that may

involve third party data movement directly between a device and

client.

XFEROPT_IP When set, indicates that the client is capable of transferring data

using TCP/IP.

XFEROPT_IPI3 When set, indicates that the client is capable of transferring data

using IPI-3 over HIPPI.

XFEROPT_SHMEM When set, indicates that the client is capable of transferring data

using a shared memory segment.

USE_PORT_RANGE When set, indicates that the Mover should use the configured

TCP/IP port range when making connections to the client.

 Addr

This field contains the addressing information which describes the elements of the stripe group.

The structure has the following format:

typedef struct straddress {
signed32Type;
union {

netaddress_t NetAddr;
ipiaddress_t IPIAddr;
piofsaddress_t PIOFSAddr;
fileaddress_t FileAddr;

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-17
Release 4.2, Revision 1

ssegaddress_t SSegAddr;
vvaddress_t VVolAddr;
pvaddress_t PVolAddr;
devaddress_t DevAddr;
memaddress_t MemAddr;
clientfileaddress_t ClientFileAddr;
shmaddress_t ShmAddr;
lftaddress_t LFTAttress;

} Addr_u;
} straddress_t;

Where each of the fields in the Addr_u union are identical to those described in the address_t struc-

ture, above.

Next

This field contains a pointer to the next address in the stripe address list.

3.5.4. I/O Reply (IOR) - IOR_t

Description

The IOR is a structure that is used to describe the state of I/O requests. This structure contains parameters

to describe the state of the request as a whole, as well as to describe the state of the individual subtransfers

described by source and sink descriptors in the IOD associated with the original request.

Format

The IOR has the following format:

typedef struct IOR {
signed32 RequestID;
signed32 Flags;
signed32 Status;
reqspecreply_t *ReqSpecReply;
signed32 SrcReplyLength;
signed32 SinkReplyLength;
srcsinkreply_t *SrcReplyList;
srcsinkreply_t *SinkReplyList;

} IOR_t;

RequestID

This field contains the value of the RequestID field that was passed with the IOD. This field is used to

identify the reply.

Flags

This field is a bit vector used to describe how to interpret the rest of the IOR. Valid values to be used in the

vector are:

IOR_COMPLETE If set, this IOR is the last one associated with the RequestID.

Otherwise, there will be additional replies following this IOR.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

IOR_ERROR If set, an error was detected during the processing of the request.

The Status field will contain a value that describes the error.

IOR_NOT_PROCESSED The IOD corresponding to this IOR was not processed.

IOR_GAPINFO_VALID The request specific reply contains gap (file hole) information.

IOR_FOREIGN_LABEL The media contains a valid ANSI volume label that was not

written by HPSS. This value is for read label requests only.

IOR_NO_LABEL The media does not contain an 80-byte volume label. This value

is for read label requests only.

IOR_NON_ANSI_LABEL The media contain an 80-byte volume label, but does not meet

ANSI specifications. This value is for read label requests only.

IOR_END_OF_SEGMENT This flag is used by the Tape Storage Server to inform its caller

that the tape storage segment referred to by the IOR has reached

its end and cannot be written further.

Status

This field contains the status of the request. A value of 0 (zero) indicates that the request was processed or

completed without error. Any other value will describe an error condition that occurred during process-

ing of the request.

ReqSpecReply

This structure contains information to describe request specific status of an operation.

typedef struct reqspecreply {
signed32Flags;
signed32Status;
signed32CountProcessed;
signed32ReqListLength;
struct {

signed32ReqReplyType;
union {

signed32 Reserved;
srcsinkdesc_t *ListenList;
devdesc_attr_t DeviceAttr;
char VolumeID[HPSS_PV_NAME_SIZE];
gapinfo_t GapInfo;

} ReqReply_u;
} ReqReply_s;

} reqspecreply_t;

Flags

This field is a bit vector which describes how the rest of the structure is to be interpreted. Valid

values to be used in the vector are:

IOR_POSITIONVALID If set, the Position field in the device attribute structure

contains a valid entry. If clear, the contents of the Position

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-19
Release 4.2, Revision 1

field is undefined.

IOR_ENDPOSITION If set and IOR_POSITIONVALID is also set, the Position

field describes the position of the device at the end of the

request. If clear and IOR_POSITIONVALID is set, the

Position field in the device attributes structure describes

the position of the device at the beginning of the request.

IOR_ERROR If set, an error was detected during the processing of the

request. The Status field will contain a value that

describes the error.

IOR_GAPINFO_VALID The request specific reply contains gap (file hole)

information.

IOR_FOREIGN_LABEL The media contains a valid ANSI label that was not

written by HPSS. This value is for read label requests

only.

IOR_NO_LABEL The media does not contain an 80-byte label. This value

is for read label requests only.

IOR_NON_ANSI_LABEL The media contain an 80-byte label, but does not meet

ANSI specifications. This value is for read label requests

only.

Status

This field contains the device specific status of the request. A value of 0 (zero) indicates that the

request was processed without error (or completed without error). Any other value will describe

an error condition that occurred during processing of the request.

CountProcessed

This field contains the number of iterations of the requested operation that have been processed.

ReqListLength

This field contains the length of a list in the ReqReply_u union. This is used for describing the

length of the ListenList field.

ReqReply_s

This field contains a typed union used to return request specific status information. This structure

is generated by the DCE IDL compiler.

RepReplyType

This field contains indication of the type of information included in the following union.

Valid values include:

REPLY_NONE No further information is returned.

REPLY_LISTENLIST Listen address information is returned. This will be

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

returned when IOD_REPLYWHENREADY is speci-

fied in the requesting IOD.

REPLY_DEVICEATTR Device attributes are returned.

REPLY_VOLUMEID Volume label information is returned.

REPLY_GAPINFO Information about an unwritten hole in a file is

returned for a read request.

ReqReply_u

This union contains device specific reply information. The union elements include:

Reserved

This field is a place holder used when no request specific status information is

returned.

ListenList

This list of structures contains the listen addresses which the responder has estab-

lished and to which part of the request each address applies.

DeviceAttr

This structure contains device attribute values. See the Mover design document

for a description of this structure.

VolumeID

This structure contains the volume label of the media.

GapInfo

This structure contains information describing an unwritten hole in a file that is

subsequently read. This information is returned instead of sending NULL bytes

to the requestor. The structure has the following format:

typedef struct gapinfo {
u_signed64 Offset;
u_signed64 Length;

} gapinfo_t;

Offset

This structure contains the offset within the transfer at which the hole

starts.

Length

This structure contains the length of the hole.

SrcReplyLength

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

HPSS Programmer’s Reference, Vol. 1 December 2000 3-21
Release 4.2, Revision 1

This field contains the number of replies in SrcReplyList.

SinkReplyLength

This field contains the number of replies in SinkReplyList.

SrcReplyList

This list of structures describes the state of each source of a data transfer. See the description of the

source/sink reply, below. There will be one source reply list entry for each source request list entry that

was received in the request IOD.

SinkReplyList

This list of structures describes the state of each sink of a data transfer. See the description of the source/

sink reply, below. There will be one sink reply list entry for each sink request list entry that was received in

the request IOD.

3.5.5. Source/Sink Reply - srcsinkreply_t

Description

The source/sink reply contains information describing how much of each source and sink request list

entry has completed and any error that was encountered during the processing of the request.

Format

The Source/Sink Reply has the following format:

typedef struct srcsinkreply {
signed32 Flags;
signed32 Status;
u_signed64 BytesMoved;
positiondesc_t Position;
struct srcsinkreply_t *Next;

} srcsinkreply_t;

Flags

This field is a bit vector that describes how the state of the request list entry, as well as how the rest of the

structure is to be interpreted. Valid values for the vector are:

IOR_COMPLETE If set, the processing for this request list entry is complete.

If clear, this request list entry is still in progress.

IOR_ERROR If set, an error was encountered processing this process

request list entry and the Status field contains a value that

describes that error. If clear, no error has been encoun-

tered while processing this request list entry.

POSITIONVALID If set, the Position field contains valid device positioning

information. If clear, the contents of the Position field is

undefined.

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I OR)

3-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ENDPOSITION If set, the contents of the Position field describe the posi-

tion of the device at the end of the request. If clear, the

contents of the Position field describe the position of the

device at the start of the request.

Status

This field contains a value that describes the current state of the request list entry. A value of 0 (zero) indi-

cates that no errors have been encountered during the processing of this request. Any other value

describes an error encounter during processing.

BytesMoved

This field contains the number of bytes of data for this request list entry that have been successfully trans-

ferred.

Position

This field contains device positioning information. This information can be later used to position the

device to access the data. See the Mover design document for further details.

Next

This field contains a pointer to the next entry in the source or sink reply list. This field is used by the DCE

encoding routines.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-1
Release 4.2, Revision 1

Chapter 4. Supplemental Data Transfer Functions

This chapter specifies support APIs to facilitate data transfers. Applications which use hpss_ReadList or

hpss_WriteList are potential users of these functions. Specifically, the following information is provided:

• Application Programming Interface (API)

• Data Definitions

• Configuration and Setup

4.1. API Functions

This section describes all APIs which are provided for use by another HPSS a client external to HPSS. The

API interface specification includes the following information:

Name

Synopsis

Description

Parameters

Return values

Error conditions

See also

Notes

Chapter 4. Supplemental Data Transfer Functions

4-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.1. IPI-3 Data Transfer Library Functions

Note that the IPI-3 Data Transfer Library functions are not thread safe (to maintain compatibility with the

other system that uses these libraries). If they are to be used, the application must guarantee that only one

thread within a process is calling one of these routines at any point in time.

4.1.1.1. ipi3_data3_open

Purpose
Open an IPI-3 transfer end point.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_open(

IPI3_INTERFACE_STRUCT Addr); /* OUT */

Description
The ipi3_data3_open routine creates an end point for IPI-3 data transfers, returning the local IPI-3

addressing information and a transfer descriptor than can be used for subsequent data transfer

operations.

Parameters
Addr Pointer to the area where the local IPI-3 client addressing

information will be returned.

Return Values
If the IPI-3 end point is succesfully opened, a non-negative value is returned that is the transfer

descriptor to be used for subsequent IPI-3 data transfer operations. If an error is encountered, a

negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_INITIALIZE_FAIL The IPI-3 library did not correctly initialize.

IPI3_RC_TOO_MANY_IO The current open request would exceed the maximum

number of open transfer descriptors allowed by the library.

IPI3_RC_COMM_FAIL Could not perform the open of the system IPI-3 master

device.

See Also
ipi3_data3_close.

Notes
The IPI-3 data transfer library currently supports 100 concurrent open transfer descriptors per

process.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-3
Release 4.2, Revision 1

4.1.1.2. ipi3_data3_close

Purpose
Close an open IPI-3 transfer end point.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_close(

int TransferDescriptor); /* IN */

Description
The ipi3_data3_close routine closes an IPI-3 data transfer end point, freeing any allocated

resources.

Parameters
TransferDescriptor The transfer descriptor corresponding to the end point to be

closed.

Return Values
If the IPI-3 end point is succesfully closed, the value IPI3_RC_OK is returned. If an error is encoun-

tered, a negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_INITIALIZE_FAIL The IPI-3 library did not correctly initialize.

IPI3_RC_NOT_OPEN TransferDescriptor does not correspond to a currently open

IPI-3 end point.

See Also
ipi3_data3_open.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.1.3. ipi3_data3_read

Purpose
Initiate an asynchronous IPI-3 read operation.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_read(

int TransferDescriptor, /* IN */

unsigned long* RetTransferID, /* OUT */

unsigned long Count, /* IN */

char *Buf); /* OUT */

Description
The ipi3_data3_read routine initiates the master side of an IPI-3 read request. The routine returns

after the end point is prepared for the operation, and returns the transfer identifier generated for

this request.

Parameters
TransferDescriptor The transfer descriptor corresponding to the end point over

which the data is to be read.

RetTransferID Pointer to an area which will contain the returned transfer

identifier.

Count The number of bytes to be read.

Buf Pointer to an area which will contain the received data.

Return Values
If the operation is successfully initialized, then the value IPI3_RC_OK is returned. If an error is

encountered, a negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_INITIALIZE_FAIL The IPI-3 library did not correctly initialize.

IPI3_RC_TOO_BIG The Count parameter exceeds the maximum transfer size

supported by the IPI-3 library.

IPI3_RC_NOT_OPEN TransferDescriptor does not correspond to a currently open

IPI-3 end point.

IPI3_RC_BUSY The end point corresponding to TransferDescriptor is currently

in the process of satisfying another request.

IPI3_RC_COMM_FAIL Could not perform initialization of the transfer operation.

See Also
ipi3_data3_write, ipi3_data3_complete.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-5
Release 4.2, Revision 1

Notes
The IPI-3 data transfer library currently supports a maximum transfer size of 64MB under AIX.

Chapter 4. Supplemental Data Transfer Functions

4-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.1.4. ipi3_data3_write

Purpose
Initiate an asynchronous IPI-3 write operation.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_write(

int TransferDescriptor, /* IN */

unsigned long *RetTransferID, /* OUT */

unsigned long Count, /* IN */

char *Buf); /* IN */

Description
The ipi3_data3_write routine initiates the master side of an IPI-3 write request. The routine returns

after the end point is prepared for the operation, and returns the transfer identifier generated for

this request.

Parameters
TransferDescriptor The transfer descriptor corresponding to the end point over

which the data is to be written.

RetTransferID Pointer to an area which will contain the returned transfer

identifier.

Count The number of bytes to be written.

Buf Pointer to an area which contains the data to be written.

Return Values
If the operation is successfully initialized, then the value IPI3_RC_OK is returned. If an error is

encountered, a negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_INITIALIZE_FAIL The IPI-3 library did not correctly initialize.

IPI3_RC_TOO_BIG The Count parameter exceeds the maximum transfer size

supported by the IPI-3 library.

IPI3_RC_NOT_OPEN TransferDescriptor does not correspond to a currently open

IPI-3 end point.

IPI3_RC_BUSY The end point corresponding to TransferDescriptor is currently

in the process of satisfying another request.

IPI3_RC_COMM_FAIL Could not perform initialization of the transfer operation.

See Also
ipi3_data3_read, ipi3_data3_complete.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-7
Release 4.2, Revision 1

Notes
The IPI-3 data transfer library currently supports a maximum transfer size of 64MB under AIX.

Chapter 4. Supplemental Data Transfer Functions

4-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.1.5. ipi3_data3_complete

Purpose
Wait for an IPI-3 data transfer to complete.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_complete(

int TransferDescriptor, /* IN */

long ActualSize); /* IN */

Description
The ipi3_data3_complete routine waits for an outstanding IPI-3 data transfer operation to

complete. If the transfer size will be less than was originally requested (e.g., when attempting to

read beyond end-of-file), the ActualSize parameter indicates the expected number of bytes.

Parameters
TransferDescriptor The transfer descriptor corresponding to the end point over

which the data transfer is being performed.

ActualSize The number of bytes actually expected, a value of -1 indicates

that the byte passed to ipi3_data3_read or ipi3_data3_write
is the amount expected.

Return Values
If the data transfer completes successfully, the number of bytes transferred is returned. If an error

is encountered, a negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_INVALID_TD TransferDescriptor does not correspond to a currently open

IPI-3 end point.

IPI3_RC_EINTR A signal interrupted this routine, the transfer operation is still

in progress.

IPI3_RC_COMM_FAIL An error occurred during the transfer operation.

IPI3_RC_TIMED_OUT The transfer operation did not complete in the allotted time.

See Also
ipi3_data3_read, ipi3_data3_write.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-9
Release 4.2, Revision 1

4.1.1.6. ipi3_data3_cancel

Purpose
Cancel a pending IPI-3 data transfer.

Synopsis
#include "ipi3defs.h"
#include "ipi3rc.h"

int
ipi3_data3_cancel(

int TransferDescriptor); /* IN */

Description
The ipi3_data3_cancel routine aborts an outstanding IPI-3 data transfer operation.

Parameters
TransferDescriptor The transfer descriptor corresponding to the end point for

which the operation is to be aborted.

Return Values
If the transfer was successfully aborted, the value IPI3_RC_OK is returned. If an error is encoun-

tered, a negative value is returned that indicates the cause of the error.

Error Conditions
IPI3_RC_UNKOWN_STAT An unexpected error occurred.

See Also
ipi3_data3_read, ipi3_data3_write, ipi3_data3_complete.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.2. IPI-3 Data Transfer Library Data Definitions

4.1.2.1. IPI-3 Interface Address Structure - IPI3_INTERFACE_STRUCT

Description
The IPI-3 Interface Address Structure contains the information necessary to identify the IPI-3 end point to

be used for a data transfer operation. This structure is returned from the ipi3_data3_open routine, and the

information must be passed in an IOD or Mover Protocol message to allow the HPSS Mover to communi-

cate with the client using IPI-3 over HIPPI.

Format
The IPI-3 Interface Address Structure has the following format:

typedef struct {
short interface;
char *name;

} IPI3_INTERFACE_STRUCT;

interface

Contains an indication of the network medium to be used for the data transfer. Currently, the only

supported value is IPI3_HIPPI.

name

Contains the name of the IPI-3 interface, as defined in the IPI-3 configuration files. This value is

used to look up the requisite address information on the node on which the HPSS Movers are

running, to allow communication with the client node.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-11
Release 4.2, Revision 1

4.1.3. Mover Socket (Parallel TCP/IP Data Transfer) Functions

4.1.3.1. mover_socket_send_buffer

Purpose
Send a data buffer using the parallel data transfer protocol.

Synopsis
#include "pdata.h"

int
mover_socket_send_buffer(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* IN */

int Length, /* IN */

char *Ticket); * IN */

Description
The mover_socket_send_buffer routine builds a parallel data header that identifies the data, and

sends the header followed by the data in the specified buffer over the specified connection.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the data is to be sent.

XferID The transfer identifier to send in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer to be sent.

Length The amount of data to be sent.

Ticket Pointer to a security ticket to be sent in the parallel data

transfer header.

Return values
If the data is successfully sent, the number of bytes sent is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header or data was sent.

See also
pdata_send_hdr_and_data, mover_socket_send_buffer_timeout,

Chapter 4. Supplemental Data Transfer Functions

4-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

mover_socket_send_buffer_time_size.

Notes
The security ticket is currently unused by the HPSS Mover and clients.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-13
Release 4.2, Revision 1

4.1.3.2. mover_socket_send_buffer_timeout

Purpose
Send a data buffer using the parallel data transfer protocol, specifying a maximum number of

seconds to wait if the connection becomes idle.

Synopsis
#include "pdata.h"

int
mover_socket_send_buffer_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* IN */

int Length, /* IN */

char *Ticket, /* IN */

int SecTimeout); /* IN */

Description
The mover_socket_send_buffer_timeout routine builds a parallel data header that identifies the

data, and sends the header followed by the data in the specified buffer over the specified connec-

tion. If the number of seconds specified by SecTimout elapses between messages from the peer

entity, the routine will return an error indication.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the data is to be sent.

XferID The transfer identifier to send in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer to be sent.

Length The amount of data to be sent.

Ticket Pointer to a security ticket to be sent in the parallel data

transfer header.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the data is successfully sent, the number of bytes sent is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header or data was sent.

Chapter 4. Supplemental Data Transfer Functions

4-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_send_hdr_and_data_timeout_size, mover_socket_send_buffer,
mover_socket_send_buffer_timeout_size.

Notes
The security ticket is currently unused by the HPSS Mover and clients.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-15
Release 4.2, Revision 1

4.1.3.3. mover_socket_send_buffer_timeout_size

Purpose
Send a data buffer using the parallel data transfer protocol, specifying a maximum number of

seconds to wait if the connection becomes idle and the size to be used for the individual write

request to the network.

Synopsis
#include "pdata.h"

int
mover_socket_send_buffer_timeout_size(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* IN */

int Length, /* IN */

char *Ticket, /* IN */

int SecTimeout, /* IN */

int WriteSize); /* IN */

Description
The mover_socket_send_buffer_timeout_size routine builds a parallel data header that identifies

the data, and sends the header followed by the data in the specified buffer over the specified

connection. If the number of seconds specified by SecTimout elapses between messages from the

peer entity, the routine will return an error indication. The value specified by WriteSize is used to

indicate how much data should be written to the network with each low-level write request (i.e.,

write() system call to the socket specified by SD).

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the data is to be sent.

XferID The transfer identifier to send in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer to be sent.

Length The amount of data to be sent.

Ticket Pointer to a security ticket to be sent in the parallel data

transfer header.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

WriteSize Maximum number of bytes to be specified with each network

write request.

Return values
If the data is successfully sent, the number of bytes sent is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Chapter 4. Supplemental Data Transfer Functions

4-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Error conditions
EINVAL An input parameter is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header or data was sent.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_send_hdr_and_data_timeout_size, mover_socket_send_buffer,
mover_socket_send_buffer_timeout.

Notes
The security ticket is currently unused by the HPSS Mover and clients.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-17
Release 4.2, Revision 1

4.1.3.4. mover_socket_get_buffer

Purpose
Request data using the parallel data transfer protocol.

Synopsis
#include "pdata.h"

int
mover_socket_get_buffer(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int Length, /* IN */

char *Ticket); /* IN */

Description
The mover_socket_get_buffer routine builds a parallel data header that identifies the data, sends

the header over the specified connection, and then attempts to receive a parallel data transfer

header and data over that same connection.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the data is to be requested and received.

XferID The transfer identifier to send in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the received data will be

stored.

Length The amount of data to be received.

Ticket Pointer to a security ticket to be sent in the parallel data

transfer header.

Return Values
If the data is successfully received, the number of bytes received is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error Conditions
EINVAL An input parameter is invalid, or data received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

See also
pdata_send_hdr, pdata_recv_hdr, mover_socket_get_buffer_timeout.

Chapter 4. Supplemental Data Transfer Functions

4-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Notes
The security ticket is currently unused by the HPSS Mover and clients.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-19
Release 4.2, Revision 1

4.1.3.5. mover_socket_get_buffer_timeout

Purpose
Request data using the parallel data transfer protocol, specifying a maximum number of seconds

to wait if the connection becomes idle.

Synopsis
#include "pdata.h"

int
mover_socket_get_buffer_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int Length, /* IN */

char *Ticket, /* IN */

int SecTimeout); /* IN */

Description
The mover_socket_get_buffer_timeout routine builds a parallel data header that identifies the

data, sends the header over the specified connection, and then attempts to receive a parallel data

transfer header and data over that same connection. If the number of seconds specified by SecTi-
mout elapses between messages from the peer entity, the routine will return an error indication.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the data is to be requested and received.

XferID The transfer identifier to send in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the received data will be

stored.

Length The amount of data to be received.

Ticket Pointer to a security ticket to be sent in the parallel data

transfer header.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return Values
If the data is successfully received, the number of bytes received is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error Conditions
EINVAL An input parameter is invalid, or data received over the

connection is invalid.

EIO An unexpected error occurred.

Chapter 4. Supplemental Data Transfer Functions

4-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EPIPE The connection closed while the header was being sent.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_send_hdr_timeout, pdata_recv_hdr_timeout, mover_set_get_buffer.

Notes
The security ticket is currently unused by the HPSS Mover and clients.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-21
Release 4.2, Revision 1

4.1.3.6. mover_socket_recv_data

Purpose
Wait for a parallel data transfer header, and receive the specified data.

Synopsis
#include "pdata.h"
int
mover_socket_recv_data(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int BufSize, /* IN */

int *BytesRecvd, /* OUT */

int NumOfPackets); /* IN */

Description
The mover_socket_recv_data routine waits for an incoming parallel data transfer header over the

specified connection and if that header matches the expected transfer identifier and offset, receives

data over the same connection.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the header and data is to be received.

XferID The transfer identifier to expect in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the received data will be

stored.

BufSize The size of the passed buffer.

BytesRecvd Place to return the number of bytes of data actually received.

NumOfPackets Number of incoming parallel data transfer headers to

process.

Return values
If the data is successfully received, the number of bytes received is returned. If the connection is

closed while receiving the header or data, a value of zero is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid, or data received over the

connection is invalid.

EIO An unexpected error occurred.

See also
pdata_recv_hdr, mover_waitfor_data, mover_socket_recv_data_timeout.

Chapter 4. Supplemental Data Transfer Functions

4-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-23
Release 4.2, Revision 1

4.1.3.7. mover_socket_recv_data_timeout

Purpose
Wait for a parallel data transfer header, and receive the specified data, specifying a maximum

number of seconds to wait if the connection becomes idle.

Synopsis
#include "pdata.h"
int
mover_socket_recv_data_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int BufSize, /* IN */

int *BytesRecvd, /* OUT */

int NumOfPackets, /* IN */

int SecTimeout); /* IN */

Description
The mover_socket_recv_data_timeout routine waits for an incoming parallel data transfer header

over the specified connection and if that header matches the expected transfer identifier and offset,

receives data over the same connection. If the number of seconds specified by SecTimout elapses

between messages from the peer entity, the routine will return an error indication.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the header and data is to be received.

XferID The transfer identifier to expect in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the received data will be

stored.

BufSize The size of the passed buffer.

BytesRecvd Place to return the number of bytes of data actually received.

NumOfPackets Number of incoming parallel data transfer headers to

process.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the data is successfully received, the number of bytes received is returned. If the connection is

closed while receiving the header or data, a value of zero is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid, or data received over the

Chapter 4. Supplemental Data Transfer Functions

4-24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

connection is invalid.

EIO An unexpected error occurred.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_recv_hdr_timeout, mover_waitfor_data_timeout, mover_socket_recv_data.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-25
Release 4.2, Revision 1

4.1.3.8. mover_socket_send_requested_data

Purpose
Wait for a parallel data transfer header, and send the requested data.

Synopsis
#include "pdata.h"

int
mover_socket_send_requested_data(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char Buffer, /* IN */

int BufSize, /* IN */

int *BytesSent, /* OUT */

int NumOfPackets); /* IN */

Description
The mover_socket_send_requested_data routine waits for an incoming parallel data transfer

header over the specified connection and if that header matches the expected transfer identifier and

offset, sends a parallel data transfer header and the data over the same connection.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the header is to be received, and the data sent.

XferID The transfer identifier to expect in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data to be sent is

located.

BufLength The size of the passed buffer.

BytesRecvd Place to return the number of bytes of data actually sent.

NumOfPackets Number of incoming parallel data transfer headers to

process.

Return values
If the data is successfully sent, the number of bytes sent is returned. If the connection is closed

while receiving the header, a value of zero is returned. Otherwise, a negative value is returned, the

absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid, or the header received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

Chapter 4. Supplemental Data Transfer Functions

4-26 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See also
pdata_recv_hdr, pdata_send_hdr_and_data, mover_waitfor_requests.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-27
Release 4.2, Revision 1

4.1.3.9. mover_socket_send_requested_data_timeout

Purpose
Wait for a parallel data transfer header, and send the requested data, specifying a maximum

number of seconds to wait if the connection becomes idle.

Synopsis
#include "pdata.h"

int
mover_socket_send_requested_data_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char Buffer, /* IN */

int BufSize, /* IN */

int *BytesSent, /* OUT */

int NumOfPackets, /* IN */

int SecTimeout); /* IN */

Description
The mover_socket_send_requested_data_timeout routine waits for an incoming parallel data

transfer header over the specified connection and if that header matches the expected transfer iden-

tifier and offset, sends a parallel data transfer header and the data over the same connection. If the

number of seconds specified by SecTimout elapses between messages from the peer entity, the

routine will return an error indication.

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the header is to be received, and the data sent.

XferID The transfer identifier to expect in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data to be sent is

located.

BufLength The size of the passed buffer.

BytesRecvd Place to return the number of bytes of data actually sent.

NumOfPackets Number of incoming parallel data transfer headers to

process.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the data is successfully sent, the number of bytes sent is returned. If the connection is closed

while receiving the header, a value of zero is returned. Otherwise, a negative value is returned, the

absolute value of which is equal to an errno value defined below.

Chapter 4. Supplemental Data Transfer Functions

4-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Error conditions
EINVAL An input parameter is invalid, or the header received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_recv_hdr_timeout, pdata_send_hdr_and_data_timeout,
mover_waitfor_requests_timeout, mover_send_requested_data.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-29
Release 4.2, Revision 1

4.1.3.10. mover_socket_send_requested_data_timeout_size

Purpose
Wait for a parallel data transfer header, and send the requested data, specifying a maximum

number of seconds to wait if the connection becomes idle and the size to be used for the individual

write request to the network.

Synopsis
#include "pdata.h"

int
mover_socket_send_requested_data_timeout_size(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char Buffer, /* IN */

int BufSize, /* IN */

int *BytesSent, /* OUT */

int NumOfPackets, /* IN */

int SecTimeout, /* IN */

int WriteSize); /* IN */

Description
The mover_socket_send_requested_data_timeout_size routine waits for an incoming parallel

data transfer header over the specified connection and if that header matches the expected transfer

identifier and offset, sends a parallel data transfer header and the data over the same connection.

If the number of seconds specified by SecTimout elapses between messages from the peer entity, the

routine will return an error indication.The value specified by WriteSize is used to indicate how

much data should be written to the network with each low-level write request (i.e., write() system

call to the socket specified by SD).

Parameters
SD File descriptor that refers to the TCP/IP connection on which

the header is to be received, and the data sent.

XferID The transfer identifier to expect in the parallel data transfer

header.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data to be sent is

located.

BufLength The size of the passed buffer.

BytesRecvd Place to return the number of bytes of data actually sent.

NumOfPackets Number of incoming parallel data transfer headers to

process.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

WriteSize Maximum number of bytes to be specified with each network

Chapter 4. Supplemental Data Transfer Functions

4-30 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

write request.

Return values
If the data is successfully sent, the number of bytes sent is returned. If the connection is closed

while receiving the header, a value of zero is returned. Otherwise, a negative value is returned, the

absolute value of which is equal to an errno value defined below.

Error conditions
EINVAL An input parameter is invalid, or the header received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_recv_hdr_timeout, pdata_send_hdr_and_data_timeout_size,

mover_waitfor_requests_timeout, mover_send_requested_data_size.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-31
Release 4.2, Revision 1

4.1.3.11. mover_waitfor_data

Purpose
Wait for connections on a listen socket, then receive data over those connections using the parallel

data transfer protocol.

Synopsis
#include "pdata.h"

int
mover_waitfor_data(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int BufSize, /* IN */

int *BytesMoved); /* OUT */

Description
The mover_waitfor_data routine waits for connections on a listen socket, then processes those

connections - waiting on incoming parallel data transfer headers and then receiving the specified

data. This routine handles multiple connections and multiple requests per connection. All opened

connections are closed before this routine returns.

Parameters
SD File descriptor that refers to the listen socket.

XferID The transfer identifier to expect in the parallel data transfer

headers.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data will be stored.

BufSize The size of the passed buffer.

BytesMoved Place to return the number of bytes of data actually received.

Return values
If the data is successfully received, the number of bytes received is returned. If the connection is

closed while receiving the headers or data, a value of zero is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EBUSY The number of connections opened exceeded the maximum

supported.

EINVAL An input parameter is invalid, or a header received over the

connection is invalid.

EIO An unexpected error occurred.

See also
pdata_recv_hdr, mover_waitfor_data_timeout.

Chapter 4. Supplemental Data Transfer Functions

4-32 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Notes
This routine currently supports 32 simultaneous open connections.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-33
Release 4.2, Revision 1

4.1.3.12. mover_waitfor_data_timeout

Purpose
Wait for connections on a listen socket, then receive data over those connections using the parallel

data transfer protocol, specifying a maximum number of seconds to wait if the connection becomes

idle.

Synopsis
#include "pdata.h"

int
mover_socket_data_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* OUT */

int BufSize, /* IN */

int *BytesMoved, /* OUT */

int SecTimeout); /* IN */

Description
The mover_socket_data_timeout routine waits for connections on a listen socket, then processes

those connections - waiting on incoming parallel data transfer headers and then receiving the spec-

ified data.If the number of seconds specified by SecTimout elapses between messages from the peer

entity, the routine will return an error indication. This routine handles multiple connections and

multiple requests per connection. All opened connections are closed before this routine returns.

Parameters
SD File descriptor that refers to the listen socket.

XferID The transfer identifier to expect in the parallel data transfer

headers.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data will be stored.

BufSize The size of the passed buffer.

BytesMoved Place to return the number of bytes of data actually received.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the data is successfully received, the number of bytes received is returned. If the connection is

closed while receiving the headers or data, a value of zero is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EBUSY The number of connections opened exceeded the maximum

supported.

EINVAL An input parameter is invalid, or a header received over the

Chapter 4. Supplemental Data Transfer Functions

4-34 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

connection is invalid.

EIO An unexpected error occurred.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_recv_hdr_timeout, mover_waitfor_data.

Notes
This routine currently supports 32 simultaneous open connections.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-35
Release 4.2, Revision 1

4.1.3.13. mover_waitfor_requests

Purpose
Wait for connections on a listen socket, then send data over those connections using the parallel

data transfer protocol.

Synopsis
#include "pdata.h"

int
mover_waitfor_requests(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* IN */

int BufSize, /* IN */

int *BytesMoved); /* OUT */

Description
The mover_waitfor_requests routine waits for connections on a listen socket, then processes those

connections - waiting on incoming parallel data transfer headers and then sending the specified

data. This routine handles multiple connections and multiple requests per connection. All opened

connections are closed before this routine returns.

Parameters
SD File descriptor that refers to the listen socket.

XferID The transfer identifier to expect in the parallel data transfer

headers.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data to be sent is

located.

BufSize The size of the passed buffer.

BytesMoved Place to return the number of bytes of data actually sent.

Return values
If the data is successfully sent, the number of bytes sent is returned. If the connection is closed

while receiving the headers, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBUSY The number of connections opened exceeded the maximum

supported.

EINVAL An input parameter is invalid, or a header received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

Chapter 4. Supplemental Data Transfer Functions

4-36 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See also
pdata_recv_hdr, pdata_send_hdr_and_data, mover_waitfor_requests_timeout.

Notes
This routine currently supports 32 simultaneous open connections.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-37
Release 4.2, Revision 1

4.1.3.14. mover_waitfor_requests_timeout

Purpose
Wait for connections on a listen socket, then send data over those connections using the parallel

data transfer protocol, specifying a maximum number of seconds to wait if the connection becomes

idle.

Synopsis
#include "pdata.h"

int
mover_waitfor_requests_timeout(

int SD, /* IN */

u_signed64 XferID, /* IN */

u_signed64 Offset, /* IN */

char *Buffer, /* IN */

int BufSize, /* IN */

int *BytesMoved, /* OUT */

int SecTimeout); /* IN */

Description
The mover_waitfor_requests_timeout routine waits for connections on a listen socket, then

processes those connections - waiting on incoming parallel data transfer headers and then sending

the specified data. If the number of seconds specified by SecTimout elapses between messages from

the peer entity, the routine will return an error indication. This routine handles multiple connec-

tions and multiple requests per connection. All opened connections are closed before this routine

returns.

Parameters
SD File descriptor that refers to the listen socket.

XferID The transfer identifier to expect in the parallel data transfer

headers.

Offset The transfer offset at which this data begins.

Buffer Pointer to the data buffer in which the data to be sent is

located.

BufSize The size of the passed buffer.

BytesMoved Place to return the number of bytes of data actually sent.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the data is successfully sent, the number of bytes sent is returned. If the connection is closed

while receiving the headers, a value of zero is returned. Otherwise, a negative value is returned,

the absolute value of which is equal to an errno value defined below.

Error conditions
EBUSY The number of connections opened exceeded the maximum

supported.

Chapter 4. Supplemental Data Transfer Functions

4-38 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

EINVAL An input parameter is invalid, or a header received over the

connection is invalid.

EIO An unexpected error occurred.

EPIPE The connection closed while the header was being sent.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_recv_hdr_timeout, pdata_send_hdr_and_data_timeout, mover_waitfor_requests.

Notes
This routine currently supports 32 simultaneous open connections.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-39
Release 4.2, Revision 1

4.1.4. Mover Protocol APIs

4.1.4.1. mvrprot_recv_initmsg

Purpose
Receive a mover protocol initiator message.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_recv_initmsg(

int SockFD, /* IN */

initiator_msg_t* InitPtr); /* OUT */

Description
The mvrprot_recv_initmsg routine receives a mover protocol initiator message over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

message is to be received.

InitPtr Pointer to the area in which the received message will be

stored.

Return Values
If the message is successfully received, HPSS_E_NOERROR is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to receive the

message.

HPSS_EINVAL The verification of the checksum sent with the message failed.

See also
mvrprot_send_initmsg.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-40 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.4.2. mvrprot_send_initmsg

Purpose
Send a mover protocol initiator message.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_send_initmsg(

int SockFD, /* IN */

initiator_msg_t *InitPtr); /* IN */

Description
The mvrprot_recv_initmsg routine sends a mover protocol initiator message over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

message is to be sent.

InitPtr Pointer to the message to be sent.

Return values
If the message is successfully sent, HPSS_E_NOERROR is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to send the message.

See also
mvrprot_recv_initmsg.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-41
Release 4.2, Revision 1

4.1.4.3. mvrprot_recv_ipaddr

Purpose
Receive a mover protocol initiator TCP/IP address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_recv_ipaddr(

int SockFD, /* IN */

initiator_ipaddr_t* InitIpPtr); /* OUT */

Description
The mvrprot_recv_ipaddr routine receives a mover protocol TCP/IP address over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be received.

InitIpPtr Pointer to the area in which the received address will be

stored.

Return values
If the address is successfully received, HPSS_E_NOERROR is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to receive the

address.

HPSS_EINVAL The verification of the checksum sent with the address failed.

See also
mvrprot_send_ipaddr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-42 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.4.4. mvrprot_send_ipaddr

Purpose
Send a mover protocol initiator TCP/IP address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_send_ipaddr(

int SockFD, /* IN */

initiator_ipaddr_t *InitIpPtr); /* IN */

Description
The mvrprot_send_ipaddr routine sends a mover protocol TCP/IP address over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be sent.

InitIpPtr Pointer to the address to be sent.

Return values
If the address is successfully sent, HPSS_E_NOERROR is sent. Otherwise, a negative value is

returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to send the address.

See also
mvrprot_recv_ipaddr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-43
Release 4.2, Revision 1

4.1.4.5. mvrprot_recv_ipi3addr

Purpose
Receive a mover protocol initiator IPI-3 address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_recv_ipi3addr(

int SockFD, /* IN */

initiator_ipi3addr_t *InitIpi3Ptr); /* OUT */

Description
The mvrprot_recv_ipi3addr routine receives a mover protocol IPI-3 address over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be received.

InitIpi3Ptr Pointer to the area in which the received address will be

stored.

Return values
If the address is successfully received, HPSS_E_NOERROR is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to receive the

address.

HPSS_EINVAL The verification of the checksum sent with the address failed.

See also
mvrprot_send_ipi3addr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-44 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.4.6. mvrprot_send_ipi3addr

Purpose
Send a mover protocol initiator IPI-3 address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_send_ipi3addr(

int SockFD, /* IN */

initiator_ipi3addr_t *InitIpi3Ptr); /* IN */

Description
The mvrprot_send_ipi3addr routine sends a mover protocol IPI-3 address over the specified

socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be sent.

InitIpi3Ptr Pointer to the address to be sent.

Return values
If the address is successfully sent, HPSS_E_NOERROR is sent. Otherwise, a negative value is

returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to send the address.

See also
mvrprot_recv_ipi3addr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-45
Release 4.2, Revision 1

4.1.4.7. mvrprot_recv_shmaddr

Purpose
Receive a mover protocol initiator shared memory address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_recv_shmaddr(

int SockFD, /* IN */

initiator_shmaddr_t *InitShmPtr); /* OUT */

Description
The mvrprot_recv_shmaddr routine receives a mover protocol shared memory address over the

specified socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be received.

InitShmPtr Pointer to the area in which the received address will be

stored.

Return values
If the address is successfully received, HPSS_E_NOERROR is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to receive the

address.

HPSS_EINVAL The verification of the checksum sent with the address failed.

See also
mvrprot_send_shmaddr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-46 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.4.8. mvrprot_send_shmaddr

Purpose
Send a mover protocol initiator shared memory address.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_send_shmaddr(

int SockFD, /* IN */

initiator_shmaddr_t* InitShmPtr); /* IN */

Description
The mvrprot_send_shmaddr routine sends a mover protocol shared memory address over the

specified socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

address is to be sent.

InitShmPtr Pointer to the address to be sent.

Return values
If the address is successfully sent, HPSS_E_NOERROR is sent. Otherwise, a negative value is

returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to send the address.

See also
mvrprot_recv_shmaddr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-47
Release 4.2, Revision 1

4.1.4.9. mvrprot_recv_compmsg

Purpose
Receive a mover protocol completion message.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_recv_compmsg(

int SockFD, /* IN */

completion_msg_t *CompPtr); /* OUT */

Description
The mvrprot_recv_compmsg routine receives a mover protocol completion message over the spec-

ified socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

message is to be received.

CompPtr Pointer to the area in which the received message will be

stored.

Return values
If the message is successfully received, HPSS_E_NOERROR is returned. Otherwise, a negative

value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to receive the

message.

HPSS_EINVAL The verification of the checksum sent with the message failed.

See also
mvrprot_send_compmsg.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-48 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.4.10. mvrprot_send_compmsg

Purpose
Send a mover protocol completion message.

Synopsis
#include "mvr_protocol.h"

long
mvrprot_send_compmsg(

int SockFD, /* IN */

completion_msg_t* CompPtr); /* IN */

Description
The mvrprot_recv_compmsg routine sends a mover protocol completion message over the speci-

fied socket.

Parameters
SockFD Descriptor that refers to the open connection over which the

message is to be sent.

CompPtr Pointer to the message to be sent.

Return values
If the message is successfully sent, HPSS_E_NOERROR is returned. Otherwise, a negative value

is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
HPSS_ECONN The connection was closed while trying to send the message.

See also
mvrprot_recv_compmsg.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-49
Release 4.2, Revision 1

4.1.5. Mover Protocol Data Structures

4.1.5.1. Mover Protocol Initiator Message Structure - initiator_msg_t

Description
The Mover Protocol Initiator Message Structure contains information used to communicate transfer

options during an HPSS data transfer.

Format
The Mover Protocol Initiator Message Structure has the following format:

typedef struct initiator_msg {
u_signed64 Delimiter;
unsigned32 Flags;
unsigned32 Type;
u_signed64 Offset;
u_signed64 Length;
u_signed64 BlockSize;
u_signed64 StripeWidth;
u_signed64 Stride;
u_signed64 TotalLength;
char SecurityTicket[MVRPROT_SEC_TICKET_LEN];
u_signed64 CheckSum;

} ;

Delimiter

Contains a distinct value to identify the message boundary.

Flags

Contains values that indicate data transfer control options.

Valid values include:

MVRPROT_RESPONDER Indicates that the sender will be the responder for the

current part of the data transfer.

MVPROT_ADDR_FOLLOWS Indicates that an address message will be sent following

the initiator message.

MVRPROT_COMP_REPLY Indicates that the sender requests a completion message

be sent upon completion of the current part of the data

transfer.

MVRPROT_HOLD_RESOURCES Indicates that the peer's connection to the passed address

should remain open across requests.

Type

Indicates the transfer mechanism type. Valid values include:

Chapter 4. Supplemental Data Transfer Functions

4-50 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

NET_ADDRESS TCP/IP transfer.

IPI_ADDRESS IPI-3 transfer.

SHM_ADDRESS Shared memory transfer.

Offset

The current offset within the data transfer.

Length

The length of the current part of the data transfer.

BlockSize

The block size used for striping at the client or device level. This field is currently unused.

StripeWidth

The width of the stripe at the client or device level. This field is currently unused.

Stride

The stride at the client or device level.

This field is currently unused.

TotalLength

The total amount of data, contiguous within the transfer, for which the sender will use the same data trans-

fer mechanism. This value is used to perform passive-side read-ahead optimization.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-51
Release 4.2, Revision 1

4.1.5.2. Mover Protocol Completion Msg Structure - completion_msg_t

Description
The Mover Protocol Completion Message Structure is used to communicate the completion status of part

of an HPSS data transfer, and is sent from the transfer responder to the transfer initiator.

Format
The Mover Protocol Completion Message Structure has the following format:

typedef struct completion_msg {
u_signed64 Delimiter;
unsigned32 Flags;
unsigned32 Status;
u_signed64 BytesMoved;
char SecurityTicket[MVRPROT_SEC_TICKET_LEN];
u_signed64 CheckSum;

} completion_msg_t;

Delimiter

Contains a distinct value to identify the message boundary.

Flags

Contains flags describing the result of the transfer. This field is currently unused.

Status

Contains the status of completed part of the transfer, as viewed by the transfer responder.

BytesMoved

Contains the number of bytes successfully moved, contiguous from the start of the current part of the

transfer.

SecurityTicket

Provides space to communicate a security ticket. This field is currently unused.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

4-52 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.5.3. Mover Protocol TCP/IP Address Structure - initiator_ipaddr_t

Description
The Mover Protocol TCP/IP Address Structure is used to communicate TCP/IP addressing information.

Format
The Mover Protocol TCP/IP Address Structure has the following format:

typedef struct initiator_ipaddr {
u_signed64 Delimiter;
unsigned32 Flags;
netaddress_t IpAddr;
char SecurityTicket[MVRPROT_SEC_TICKET_LEN];
u_signed64 CheckSum;

} initiator_ipaddr_t;

Delimiter

Contains a distinct value to identify the message boundary.

Flags

Contains flags specific to the TCP/IP address. This field is currently unused.

IpAddr

Contains the TCP/IP address in network byte order. See the format of the Input / Output Descriptor

(IOD) for further details.

SecurityTicket

Provides space to communicate a security ticket. This field is currently unused.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-53
Release 4.2, Revision 1

4.1.5.4. Mover Protocol IPI-3 Address Structure - initiator_ipi3addr_t

Description
The Mover Protocol IPI-3 Address Structure is used to communicate IPI-3 addressing information.

Format
The Mover Protocol IPI-3 Address Structure has the following format:

typedef struct initiator_ipi3addr {
u_signed64 Delimiter;
unsigned32 Flags;
ipiaddress_t Ipi3Addr;
char SecurityTicket[MVRPROT_SEC_TICKET_LEN];
u_signed64 CheckSum;

} initiator_ipi3addr_t;

Delimiter

Contains a distinct value to identify the message boundary.

Flags

Contains flags specific to the IPI-3 address. This field is currently unused.

Ipi3Addr

Contains the IPI-3 address. See the format of the Input / Output Descriptor (IOD) for further details.

SecurityTicket

Provides space to communicate a security ticket. This field is currently unused.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

4-54 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.5.5. Mover Protocol Shm Address Structure - initiator_shmaddr_t

Description
The Mover Protocol Shared Memory Address Structure is used to communicate shared memory address-

ing information.

Format
The Mover Protocol Shared Memory Address Structure has the following format:

typedef struct initiator_shmaddr {
u_signed64 Delimiter;
unsigned32 Flags;
shmaddress_t ShmAddr;
char SecurityTicket[MVRPROT_SEC_TICKET_LEN];
u_signed64 CheckSum;

} initiator_shmaddr_t;

Delimiter

Contains a distinct value to identify the message boundary.

Flags

Contains flags specific to the shared memory address. This field is currently unused.

ShmAddr

Contains the shared memory address. See the format of the Input / Output Descriptor (IOD) for further

details.

SecurityTicket

Provides space to communicate a security ticket. This field is currently unused.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-55
Release 4.2, Revision 1

4.1.6. Parallel Data Transfer Functions

4.1.6.1. pdata_recv_hdr

Purpose
Receive a parallel data transfer header.

Synopsis
#include "pdata.h"

int
pdata_recv_hdr(

int SocketDescriptor, /* IN */

pdata_hdr_t *PdataHeaderPtr); /* OUT */

Description
The pdata_recv_hdr function receives a parallel data transfer header on the connection referenced

by SocketDescriptor, and places the received header into the structure pointed to by PdataHeaderPtr.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be received.

PdataHeaderPtr Pointer to the area where the incoming header will be stored.

Return Values
If a parallel data transfer header is successfully received, the size of the header in bytes is returned.

If the connection is closed while waiting for the incoming header, a value of zero is returned.

Otherwise, a negative value is returned, the absolute value of which is equal to an errno value

defined below.

Error Conditions
EBADF SocketDescriptor does not refer to an open connection.

EINVAL Header checksum or delimiter is invalid.

See also
mover_socket_recv_data, mover_waitfor_data, pdata_recv_hdr_timeout.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-56 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.6.2. pdata_recv_hdr_timeout

Purpose
Receive a parallel data transfer header, specifying a maximum number of seconds to wait if the

connection becomes idle.

Synopsis
#include "pdata.h"

int
pdata_recv_hdr_timeout(

int SocketDescriptor, /* IN */

pdata_hdr_t *PdataHeaderPtr, /* OUT */

int SecTimeout); /* IN */

Description
The pdata_recv_hdr_timeout function receives a parallel data transfer header on the connection

referenced by SocketDescriptor, and places the received header into the structure pointed to by

PdataHeaderPtr. If the number of seconds specified by SecTimout elapses between messages from

the peer entity, the routine will return an error indication.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be received.

PdataHeaderPtr Pointer to the area where the incoming header will be stored.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return Values
If a parallel data transfer header is successfully received, the size of the header in bytes is returned.

If the connection is closed while waiting for the incoming header, a value of zero is returned.

Otherwise, a negative value is returned, the absolute value of which is equal to an errno value

defined below.

Error Conditions
EBADF SocketDescriptor does not refer to an open connection.

EINVAL Header checksum or delimiter is invalid.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
mover_socket_recv_data_timeout, mover_waitfor_data_timeout, pdata_recv_hdr.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-57
Release 4.2, Revision 1

4.1.6.3. pdata_send_hdr

Purpose
Send a parallel data transfer header.

Synopsis
#include "pdata.h"

int
pdata_send_hdr(

int SocketDescriptor, /* IN */

pdata_hdr_t* PdataHeaderPtr); /* IN */

Description
The pdata_send_hdr function sends a paralleled data transfer header, pointed to by PdataHead-
erPtr, on the connection referenced by SocketDescriptor.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be sent.

PdataHeaderPtr Pointer to the header to be sent.

Return values
If the parallel data transfer header is successfully sent, the size of the header in bytes is returned.

Otherwise, a negative value is returned, the absolute value of which is equal to an errno value

defined below.

Error conditions
EBADF SocketDescriptor does not refer to an open connection.

EPIPE The connection closed while attempting to send the header.

See also
pdata_send_hdr_and_data, mover_socket_send_buffer.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-58 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.6.4. pdata_send_hdr_timeout

Purpose
Send a parallel data transfer header, specifying a maximum number of seconds to wait if the

connection becomes idle.

Synopsis
#include "pdata.h"

int
pdata_send_hdr_timeout(

int SocketDescriptor, /* IN */

pdata_hdr_t* PdataHeaderPtr, /* IN */

int SecTimeout); /* IN */

Description
The pdata_send_hdr_timeout function sends a paralleled data transfer header, pointed to by

PdataHeaderPtr, on the connection referenced by SocketDescriptor. If the number of seconds speci-

fied by SecTimout elapses between messages from the peer entity, the routine will return an error

indication.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be sent.

PdataHeaderPtr Pointer to the header to be sent.

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the parallel data transfer header is successfully sent, the size of the header in bytes is returned.

Otherwise, a negative value is returned, the absolute value of which is equal to an errno value

defined below.

Error conditions
EBADF SocketDescriptor does not refer to an open connection.

EPIPE The connection closed while attempting to send the header.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_send_hdr_and_data_timeout, mover_socket_send_buffer_timeout.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-59
Release 4.2, Revision 1

4.1.6.5. pdata_send_hdr_and_data

Purpose
Send a parallel data transfer header, followed by the data described by that header.

Synopsis
#include "pdata.h"

int
pdata_send_hdr_and_data(

int SocketDescriptor, /* IN */

pdata_hdr_t *PdataHeaderPtr, /* IN */

char *DataBuffer, /* IN */

int DataLength); /* IN */

Description
The pdata_send_hdr_and_data function sends a parallel data transfer header, pointed to by Pdata-
HeaderPtr, and data, from the buffer referenced by DataBuffer, on the connection referenced by

SocketDescriptor.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be sent.

PdataHeaderPtr Pointer to the header to be sent.

DataBuffer Pointer to the data to be sent.

DataLength Amount of data, in bytes, to be sent (excluding the header).

Return values
If the parallel data transfer header and the data buffer are successfully sent, the amount of data sent

in bytes is returned. Otherwise, a negative value is returned, the absolute value of which is equal

to an errno value defined below.

Error conditions
EBADF SocketDescriptor does not refer to an open connection.

EINVAL The DataLength parameter does not match the length in the

parallel data transfer header.

EPIPE The connection closed while attempting to send the header or

data.

See also
pdata_send_hdr, mover_socket_send_buffer.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-60 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.6.6. pdata_send_hdr_and_data_timeout

Purpose
Send a parallel data transfer header, followed by the data described by that header, specifying a

maximum number of seconds to wait if the connection becomes idle.

Synopsis
#include "pdata.h"

int
pdata_send_hdr_and_data_timeout(

int SocketDescriptor, /* IN */

pdata_hdr_t *PdataHeaderPtr, /* IN */

char *DataBuffer, /* IN */

int DataLength, /* IN */

int SecTimeout); /* IN */

Description
The pdata_send_hdr_and_data_timeout function sends a parallel data transfer header, pointed to

by PdataHeaderPtr, and data, from the buffer referenced by DataBuffer, on the connection referenced

by SocketDescriptor. If the number of seconds specified by SecTimout elapses between messages

from the peer entity, the routine will return an error indication.

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be sent.

PdataHeaderPtr Pointer to the header to be sent.

DataBuffer Pointer to the data to be sent.

DataLength Amount of data, in bytes, to be sent (excluding the header).

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

Return values
If the parallel data transfer header and the data buffer are successfully sent, the amount of data sent

in bytes is returned. Otherwise, a negative value is returned, the absolute value of which is equal

to an errno value defined below.

Error conditions
EBADF SocketDescriptor does not refer to an open connection.

EINVAL The DataLength parameter does not match the length in the

parallel data transfer header.

EPIPE The connection closed while attempting to send the header or

data.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-61
Release 4.2, Revision 1

pdata_send_hdr_timeout, mover_socket_send_buffer_timeout.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-62 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.6.7. pdata_send_hdr_and_data_timeout_size

Purpose
Send a parallel data transfer header, followed by the data described by that header, specifying a

maximum number of seconds to wait if the connection becomes idle and the size to be used for the

individual write request to the network.

Synopsis
#include "pdata.h"

int
pdata_send_hdr_and_data_timeout_size(

int SocketDescriptor, /* IN */

pdata_hdr_t *PdataHeaderPtr, /* IN */

char *DataBuffer, /* IN */

int DataLength, /* IN */

int SecTimeout. /* IN */

int WriteSize); /* IN */

Description
The pdata_send_hdr_and_data_timeout_size function sends a parallel data transfer header,

pointed to by PdataHeaderPtr, and data, from the buffer referenced by DataBuffer, on the connection

referenced by SocketDescriptor. If the number of seconds specified by SecTimout elapses between

messages from the peer entity, the routine will return an error indication. The value specified by

WriteSize is used to indicate how much data should be written to the network with each low-level

write request (i.e., write() system call to the socket specified by SD).

Parameters
SocketDescriptor File descriptor referring to the open TCP/IP connection over

which the header is to be sent.

PdataHeaderPtr Pointer to the header to be sent.

DataBuffer Pointer to the data to be sent.

DataLength Amount of data, in bytes, to be sent (excluding the header).

SecTimeout Number of seconds to wait if the connection becomes idle

before returning; zero specifies infinite wait.

WriteSize Maximum number of bytes to be specified with each network

write request.

Return values
If the parallel data transfer header and the data buffer are successfully sent, the amount of data sent

in bytes is returned. Otherwise, a negative value is returned, the absolute value of which is equal

to an errno value defined below.

Error conditions
EBADF SocketDescriptor does not refer to an open connection.

EINVAL The DataLength parameter does not match the length in the

parallel data transfer header.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-63
Release 4.2, Revision 1

EPIPE The connection closed while attempting to send the header or

data.

ETIMEDOUT The specified timeout expired between communication with

the peer.

See also
pdata_send_hdr_timeout, mover_socket_send_buffer_timeout_size.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-64 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.7. Parallel Data Transfer Data Definitions

4.1.7.1. Parallel Data Transfer Header - pdata_hdr_t

Description
The Parallel Data Transfer Header contains the information necessary to exactly identify a contiguous

piece of a parallel data transfer. This header is used to request and/or precede data sent via TCP/IP.

Format
The Parallel Data Transfer Header has the following format:

typedef struct pdata_hdr{
u_signed64 PdataDelimiter;
u_signed64 XferID;
u_signed64 Offset;
u_signed64 Length;
char SecurityTicket[8];
u_signed64 CheckSum;

} pdata_hdr_t;

PdataDelimiter

Contains a distinct value to identify the message boundary.

XferID

The transfer identifier for the current data transfer.

Offset

The offset within the data transfer at which the associated piece of data begins.

Length

The length of the associated piece of data.

SecurityTicket

Provides space to communicate a security ticket. This field is currently unused.

CheckSum

Contains a computed checksum used to verify correct transfer of this header.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-65
Release 4.2, Revision 1

4.1.8. Network Options Functions

4.1.8.1. netopt_FindEntry

Purpose
Returns an HPSS network option entry for the specified IP address.

Synopsis
#include "hpss_netopt.h"

long
netopt_FindEntry(

long NetAddr, /* IN */

netopt_entry_t **RetTableEntryPtr); /* OUT */

Description
The netopt_FindEntry function searches the HPSS network option entries for an entry that

matches the IP address specified by NetAddr, and returns a pointer to the entry in the value

pointed to by RetTableEntryPtr.

Parameters
NetAddr The IP address of the machine or network for which a match

is requested in the HPSS network options table.

RetTableEntryPtr Pointer to the area where the HPSS network option entry

pointer will be returned.

Return Values
If an HPSS network option entry that corresponds to the specified IP address is found, then a valu

of zero is returned and a pointer to the entry is returned in the area specified by RetTableEntryPtr.
Otherwise, a negative value is returned which describes the error, as defined below.

Error Conditions
HPSS_ENOMEM Could not allocate memory for the network options table.

HPSS_ENOENT The HPSS network options configuration file does not exist or

no entry could be found that corresponds to the specified IP

address.

HPSS_ESYSTEM An operating system service failed.

See also
netopt_GetWriteSize.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

4-66 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.8.2. netopt_GetWriteSize

Purpose
Returns the size in bytes to be used for writes to the TCP/IP connection referred to by either a

socket descriptor or IP address.

Synopsis
#include "hpss_netopt.h"

int
netopt_GetWriteSize(

int SocketDescriptor, /* IN */

long NetAddr); /* IN */

Description
The netopt_GetWriteSize function returns the configured size, in bytes, to be used for writing data

to the connection referred to by either SocketDescriptor or NetAddr. The function searches the HPSS

network option entries for an entry that matches the IP address specified by NetAddr, if non-zero

and otherwise based on the local address corresponding to the socket referred to by SocketDe-
scriptor - if an entry is found and contains a non-zero network write size, that value is returned;

otherwise the environment variable HPSS_TCP_WRITESIZE is interrogated - if it is set and

contains a non-zero value, that value is returned, otherwise zero is returned.

Parameters
NetAddr The IP address of the machine or network for which a match

is requested in the HPSS network options table.

RetTableEntryPtr Pointer to the area where the HPSS network option entry

pointer will be returned.

Return Values
The size, in bytes, that is configured for the specified network address is returned, if any values has

been specified. Otherwise a value of zero is returned.

Error Conditions
None.

See also
netopt_FindEntry.

Notes
None.

Chapter 4. Supplemental Data Transfer Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 4-67
Release 4.2, Revision 1

4.1.9. Network Options Data Definitions

4.1.9.1. Network Options Entry - netopt_entry_t

Description
The Network Options Entry structure contains the configuration information for a particular network (IP)

address. This information is used to allow different networking options to be utilized for different HPSS

Mover and/or HPSS client machines and networks

Format
The Network Options Entry structure has the following format:

typedef struct netopt_entry {
unsigned long IPAddr;
unsigned long NetMask;
unsigned long RFC1323;
unsigned long SendSpace;
unsigned long RecvSpace;
unsigned long WriteSize;
unsigned long TCPNodelay;
unsigned long Reserved2;

} netopt_entry_t;

IpAddr

The IP address for this entry.

NetMask

The network mask to be applied to the incoming address to determine whether this entry applies to that

address.

RFC1323

Indicates whether RFC 1323 (large TCP window size support) should be enabled for this address. A value

of zero indicates that RFC 1323 support should be disabled; a non-zero value indicates that RFC 1323 sup-

port should be enabled.

SendSpace

The value to be used for the socket send buffer size.

RecvSpace

The value to be used for the socket receive buffer size.

WriteSize

The maximum number of bytes that should be written to a network connection corresponding to this entry

with a single I/O request.

TCPNodelay

Indicates whether the algorithm employed to try and coalesce small writes to a TCP connection should be

disabled. A value of zero indicates that the algorigthm should not be disabled; a non-zero value indicates

Chapter 4. Supplemental Data Transfer Functions

4-68 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

that the algorithm should be disabled.

Reserved2

This field is currently unused.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-1
Release 4.2, Revision 1

Chapter 5. Math Library

This chapter specifies the HPSS 64-bit arithmetic programming interface. Specifically, the following infor-

mation is provided:

Application Programming Interfaces (APIs)

Data Definitions

5.1. API Interfaces

This section describes all API interfaces which are provided for use by another HPSS subsystem or by a cli-

ent external to HPSS. The API interface specification includes the following information:

Name

Synopsis

Description

Parameters

Return values

Error conditions

See also

Notes

Chapter 5. Math Library

5-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.1. add64m

Purpose
Add two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

u_signed64 add64m(
u_signed64 ll1, /* IN */
u_signed64 ll2); /* IN */

Description
The add64m macro is called to add two unsigned 64-bit integers.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
add64_3m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-3
Release 4.2, Revision 1

5.1.2. add64_3m

Purpose
Add two unsigned 64-bit integers and store the result in a separate integer field.

Synopsis
#include "u_signed64.h"

void add64m(
u_signed64 ll1, /* OUT */
u_signed64 ll2, /* IN */
u_signed64 ll3); /* IN */

Description
The add64_3m macro is called to add two unsigned 64-bit integers and store the result into a third

unsigned 64-bit integer.

Parameters
ll1 Specifies the result of the addition of the 2 unsigned 64-bit

operands.

ll2 Specifies the first unsigned 64-bit integer addition operand.

ll3 Specifies an unsigned 64-bit integer to add to the first

operand.

Return values
None. The result of the addition is stored in the first parameter.

Error conditions
None.

See also
add64m.

Notes
None.

Chapter 5. Math Library

5-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.3. and64m

Purpose
Find the bitwise AND of two unsigned 64-bit values.

Synopsis
#include "u_signed64.h"

u_signed64 and64m (
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The and64m macro is called to perform an AND operation of two unsigned 64-bit integer values.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
not64m, or64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-5
Release 4.2, Revision 1

5.1.4. bld64m

Purpose
Build an unsigned 64-bit integer from two unsigned 32-bit integers.

Synopsis
#include "u_signed64.h"

u_signed64 bld64m(
unsigned32 l1, /* IN */

unsigned32 l2); /* IN */

Description
The bld64m macro is called to construct an unsigned 64-bit integer from 2 unsigned 32-bit integers.

Parameters
l1 Specifies the unsigned 32-bit integer which will occupy the

high order portion of the unsigned 64-bit integer.

l2 Specifies the unsigned 32-bit integer which will occupy the

low order portion of the unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
cast64m.

Notes
none.

Chapter 5. Math Library

5-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.5. cast64m

Purpose
Cast an unsigned 32-bit integer into an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 cast64m(
unsigned32 l1); /* IN */

Description
The cast64m macro is called to cast an unsigned 32-bit integer into an unsigned 64-bit integer.

Parameters
l1 Specifies an unsigned 32-bit integer to be cast into an

unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
cast32m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-7
Release 4.2, Revision 1

5.1.6. div64m

Purpose
Divide an unsigned 64-bit integer by an unsigned 32-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 div64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The div64m macro is called to divide an unsigned 64-bit value by an unsigned 32-bit value.

Parameters
ll1 Specifies an unsigned 64-bit integer numerator.

l1 Specifies an unsigned 32-bit integer divisor.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div2x64m, div_cl64m, div_2xcl64m, mod64m, mod2x64m.

Notes
None.

Chapter 5. Math Library

5-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.7. div2x64m

Purpose
Divide an unsigned 64-bit integer by an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 div64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The div64m macro is called to divide an unsigned 64-bit value by an unsigned 64-bit value.

Parameters
ll1 Specifies an unsigned 64-bit integer numerator.

ll2 Specifies an unsigned 64-bit integer divisor.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div64m, div2x64m, div_cl64m, mod64m, mod2x64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-9
Release 4.2, Revision 1

5.1.8. div_cl64m

Purpose
Divide an unsigned 64-bit integer by an unsigned 32-bit integer and return the integer ceiling of

the result.

Synopsis
#include "u_signed64.h"

u_signed64 div_cl64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The div_cl64m macro is called to return the integer ceiling resulting from the division of an

unsigned 64-bit value by an unsigned 32-bit value.

Parameters
ll1 Specifies an unsigned 64-bit integer numerator.

l1 Specifies an unsigned 32-bit integer numerator.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div64m, div2x64m, div_2x64m, mod64m.

Notes
None.

Chapter 5. Math Library

5-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.9. div_2xcl64m

Purpose
Divide an unsigned 64-bit integer by an unsigned 64-bit integer and return the integer ceiling of

the result.

Synopsis
#include "u_signed64.h"

u_signed64 div_cl64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The div_cl64m macro is called to return the integer ceiling resulting from the division of an

unsigned 64-bit value by an unsigned 64-bit value.

Parameters
ll1 Specifies an unsigned 64-bit integer numerator.

ll2 Specifies an unsigned 64-bit integer numerator.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div64m, div2x64m, div_cl64m, mod64m, mod2x4m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-11
Release 4.2, Revision 1

5.1.10. eqz64m

Purpose
Determine if an unsigned 64-bit integer is zero.

Synopsis
#include "u_signed64.h"

int eqz64m (
u_signed64 ll1); /* IN */

Description
The eqz64m macro is called to check if an unsigned 64-bit integer equals zero.

Parameters
ll1 Specifies the unsigned 64-bit integer.

Return values
1 is returned if ll1 equals zero. Otherwise 0 is returned.

Error conditions
None.

See also
eq64m, ge64m, gt64m, le64m, lt64m, neqz64m, neq64m.

Notes
None.

Chapter 5. Math Library

5-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.11. eq64m

Purpose
Compare two unsigned 64-bit integers for equality.

Synopsis
#include "u_signed64.h"

int eq64m (
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The eq64m macro is called to check if two unsigned 64-bit integer values are equal.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
1 is returned if ll1 = ll2. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, ge64m, gt64m, le64m, lt64m, neqz64m, neq64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-13
Release 4.2, Revision 1

5.1.12. ge64m

Purpose
Perform greater than or equal check between two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

int ge64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The ge64m macro is called to determine if the first unsigned 64-bit integer value is greater than or

equal to the second unsigned 64-bit integer.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
1 is returned if ll1 >=ll2. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, eq64m, gt64m, le64m, lt64m, neqz64m, neq64m.

Notes
None.

Chapter 5. Math Library

5-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.13. gt64m

Purpose
Perform greater than check between two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

int gt64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The gt64m macro is called to determine if the first unsigned 64-bit integer value is greater than the

second unsigned 64-bit integer.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
1 is returned if ll1 > ll2. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, eq64m, ge64m, le64m, lt64m, neq64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-15
Release 4.2, Revision 1

5.1.14. high32m

Purpose
Extract the high order 32-bits from an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

unsigned32 high32m(
u_signed64 ll1); /* IN */

Description
The high32m macro is called to extract an unsigned 32-bit integer from the high order 32-bits of an

unsigned 64-bit integer.

Parameters
ll1 Specifies the unsigned 64-bit integer.

Return values
Upon completion, an unsigned 32-bit integer is returned.

Error conditions
None.

See also
low32m.

Notes
None.

Chapter 5. Math Library

5-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.15. le64m

Purpose
Perform less than or equal check between two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

int le64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The le64m macro is called to determine if the first unsigned 64-bit integer value is less than or equal

to the second unsigned 64-bit integer.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
1 is returned if ll1 <= ll2. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, eq64m, ge64m, gt64m, lt64m, neq64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-17
Release 4.2, Revision 1

5.1.16. low32m

Purpose
Extract the low order 32-bits from an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

unsigned32 low32m(
u_signed64 ll1); /* IN */

Description
The low32m macro is called to extract an unsigned 32-bit integer from the low order 32-bits of an

unsigned 64-bit integer.

Parameters
ll1 Specifies the unsigned 64-bit integer.

Return values
Upon completion, a 32-bit unsigned integer is returned.

Error conditions
None.

See also
high32m.

Notes
None.

Chapter 5. Math Library

5-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.17. lt64m

Purpose
Perform less than check between two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

int lt64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The lt64m macro is called to determine if the first unsigned 64-bit integer value is less than the

second unsigned 64-bit integer.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
1 is returned if ll1 < ll2. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, eq64m, ge64m, gt64m, le64m, neq64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-19
Release 4.2, Revision 1

5.1.18. mod64m

Purpose
Determine the remainder on division of an unsigned 64-bit integer by an unsigned 32-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 mod64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The mod64m macro is called to perform a modulus of an unsigned 64-bit integer value by an

unsigned 32-bit integer value.

Parameters
ll1 Specifies the unsigned 64-bit integer to divide.

l1 Specifies the unsigned 32-bit integer divisor.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div64m, div2x64m, div_cl64m, div_2xcl64m, mod2x64m.

Notes
None.

Chapter 5. Math Library

5-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.19. mod2x64m

Purpose
Determine the remainder on division of an unsigned 64-bit integer by an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 mod64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The mod64m macro is called to perform a modulus of an unsigned 64-bit integer value by an

unsigned 64-bit integer value.

Parameters
ll1 Specifies the unsigned 64-bit integer to modulus.

ll2 Specifies the unsigned 64-bit integer modulus value.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
div64m, div2x64, div_cl64m, div_2xcl64m, mod64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-21
Release 4.2, Revision 1

5.1.20. mul64m

Purpose
Multiply an unsigned 64-bit integer by an unsigned 32-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 mul64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The mul64m macro is called to multiply an unsigned 64-bit integer value by an unsigned 32-bit

integer value.

Parameters
ll1 Specifies the unsigned 64-bit integer multiplier.

l1 Specifies the unsigned 32-bit integer multiplier.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
None.

Notes
None.

Chapter 5. Math Library

5-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.21. neqz64m

Purpose
Determine if an unsigned 64-bit integer is nonzero.

Synopsis
#include "u_signed64.h"

int neqz64m(
u_signed64 ll1); /* IN */

Description
The neqz64m macro is called to check if an unsigned 64-bit integer is nonzero.

Parameters
ll1 Specifies the unsigned 64-bit integer.

Return values
1 is returned if ll1 != 0. Otherwise 0 is returned.

Error conditions
None.

See also
eqz64m, eq64m, ge64m, gt64m, le64m, lt64m, neq64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-23
Release 4.2, Revision 1

5.1.22. not64m

Purpose
Perform a bitwise NOT of an unsigned 64-bit integer.

Synopsis
#include "u_signed64.h"

u_signed64 not64m(
u_signed64 ll1); /* IN */

Description
The not64m macro is called to perform a bitwise NOT of an unsigned 64-bit integer value.

Parameters
ll1 Specifies an unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
and64m, or64m.

Notes
None.

Chapter 5. Math Library

5-24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.23. or64m

Purpose
Find the bitwise OR of two unsigned 64-bit values.

Synopsis
#include "u_signed64.h"

or64m (
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The or64m macro is called to perform an OR operation of two unsigned 64-bit integer values.

Parameters
ll1 Specifies the first unsigned 64-bit integer.

ll2 Specifies the second unsigned 64-bit integer.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
and64m, not64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-25
Release 4.2, Revision 1

5.1.24. shl64m

Purpose
Shift an unsigned 64-bit integer left by an unsigned 32-bit unsigned integer amount.

Synopsis
#include "u_signed64.h"

u_signed64 shl64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The shl64m macro is called to shift an unsigned 64-bit integer left by an unsigned 32-bit integer

count.

Parameters
ll1 Specifies an unsigned 64-bit integer to be shifted.

l1 Specifies an unsigned 32-bit integer shift count.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
shr64m.

Notes
None.

Chapter 5. Math Library

5-26 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.25. shr64m

Purpose
Shift an unsigned 64-bit integer right by an unsigned 32-bit integer amount.

Synopsis
#include "u_signed64.h"

u_signed64 shr64m(
u_signed64 ll1, /* IN */

unsigned32 l1); /* IN */

Description
The shr64m macro is called to shift an unsigned 64-bit integer right by an unsigned 32-bit integer

count.

Parameters
ll1 Specifies an unsigned 64-bit integer to be shifted.

l1 Specifies an unsigned 32-bit integer shift count.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
shl64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-27
Release 4.2, Revision 1

5.1.26. sub64m

Purpose
Subtract two unsigned 64-bit integers.

Synopsis
#include "u_signed64.h"

u_signed64 sub64m(
u_signed64 ll1, /* IN */

u_signed64 ll2); /* IN */

Description
The sub64m macro is called to subtract two unsigned 64-bit integer values.

Parameters
ll1 Specifies an unsigned 64-bit integer.

ll2 Specifies an unsigned 64-bit integer to subtract from the first

operand.

Return values
Upon completion, an unsigned 64-bit integer is returned.

Error conditions
None.

See also
sub64_3m.

Notes
None.

Chapter 5. Math Library

5-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

5.1.27. sub64_3m

Purpose
Subtract two unsigned 64-bit integers and store the result in a separate integer field.

Synopsis
#include "u_signed64.h"

void sub64m(
u_signed64 ll1, /* OUT */
u_signed64 ll2, /* IN */
u_signed64 ll3); /* IN */

Description
The sub64_3m macro is called to add two unsigned 64-bit integers and store the result into a third

unsigned 64-bit integer.

Parameters
ll1 Specifies the result of the subtraction of the 2 unsigned 64-bit

operands.

ll2 Specifies the first unsigned 64-bit integer subtraction

operand.

ll3 Specifies an unsigned 64-bit integer to subtract from the first

operand.

Return values
None. The result of the subtraction is stored in the first parameter.

Error conditions
None.

See also
sub64m.

Notes
None.

Chapter 5. Math Library

HPSS Programmer’s Reference, Vol. 1 December 2000 5-29
Release 4.2, Revision 1

5.2. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are pro-

vided by this subsystem. A data definition may be represented by constructs such as data structures and

constants. For each data definition, a description, format (including parameter descriptions), and clients

which access the data definition are provided.

5.2.1. u_signed64

Description

u_signed64 is the type for an unsigned 64-bit integer.

Format

For big-endian platforms, the u_signed64 type is defined in the u_signed64.h file as follows:

typedef struct{
unsigned long h;
unsigned long l;

} u_signed64;

For little-endian platforms, the u_signed64 type is defined in the u_signed64.h file as follows:

typedef struct{
unsigned long l;
unsigned long h;

} u_signed64;

5.2.2. unsigned32

Description
unsigned32 is the type for an unsigned 32-bit integer.

Format
The unsigned32 type is defined in the u_signed64.h file as follows:

typedef unsigned long unsigned32;

Chapter 5. Math Library

5-30 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-1
Release 4.2, Revision 1

Chapter 6. MPI-IO API Functions

This chapter specifies the MPI-IO application programming interface. Specifically, the following informa-

tion is provided:

• Application Programming Interfaces

• C++ Language Bindings

• Fortran Language Bindings

• Data Definitions

• Troubleshooting

Appendix XXX provides programming examples for MPI-IO.

6.1. Application Programming Interfaces

This section describes all APIs that are provided for use by a client application. The definitions of these

APIs follow the MPI-2 Standard. Implementation-defined aspects of the standard are noted in the

descriptions of the individual functions.

Each API is designated as being collective or noncollective. Collective functions must be called by all the

processes that participated in opening a file (e.g., for MPI_File_set_view, all the processes in the commu-

nicator group specified in the comm argument to MPI_File_open must call the function). Otherwise, the

application may eventually deadlock. Note that the communicator group specified in opening a file need

not include all the processes running in a parallel program.

Processes that are members of the communicator group that opens a given file are called participating pro-
cesses for that file. Participating processes must issue corresponding collective calls in the same order to

avoid deadlock. For example, if a set of processes opens two files, the processes must do so in the same

order.

Among collective calls, the descriptions further distinguish between synchronizing and nonsynchronizing

calls. For synchronizing calls, no process will return from its call until all participating processes have

made their corresponding call. Nonsynchronizing calls may return on individual processes before the

other participating processes have issued the call. The designation of a call as collective or noncollective is

specified in the MPI-2 standard. Whether or not a collective call synchronizes is a characteristic of the

implementation.

Synchronizing operations should not be confused with blocking operations. MPI-2 defines both blocking

and nonblocking versions of its read and write interfaces. Blocking versions do not return until the

requesting process has completed its data transfer and the buffer can safely be read (in the case of read

operations) or reused (in the case of writes). Nonblocking calls may return before the transfer is complete

so that computation may proceed in parallel with I/O. The program must later test for completion of the

transfer using MPI_Test or MPI_Wait.

Chapter 6. MPI-IO API Functions

6-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

The APIs are designed to work in a multithreaded application. Multiple threads can safely access different

open file handles. However, as with MPI collective communications, collective access to the same file han-

dle from multiple threads is not guaranteed to be safe. Although this implementation attempts to detect

such errors, it is not able to do so in every case. Accessing the same file from different threads using differ-

ent file handles (obtained from multiple calls to MPI_File_open) is safe.

The MPI-IO API and the HPSS Client API can access all the same files, but an MPI-IO file handle returned

by MPI_File_open cannot be used as a file descriptor in any HPSS calls, and HPSS API file descriptors

cannot be used in MPI-IO calls.

The APIs provided to client applications are divided into the following subsections:

• File Manipulation

• File Access

• File Interoperability

• File Consistency

• Error Handling

• File Hints

Each API specification includes the following information:

Name

Synopsis

Description

Parameters

Return Values

Error Conditions

See Also

Notes

There are a number of errors that may be returned from any MPI-IO API call. Rather than repeating them

in each API specification, the common errors are given here:

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-3
Release 4.2, Revision 1

MPI_ERR_ENOCONNECT Unable to connect to HPSS file system; HPSS may be down.

MPI_ERR_EPERM The user’s credentials could not be established; DCE may be

down.

MPI_ERR_ETIMEDOUT An operation timed out or received a communication error,

and the operation could not be successfully retried; HPSS or

DCE may be down.

MPI_ERR_FILE_IN_USE The file is currently being used by another process.

MPI_ERR_INTERN An internal MPI-IO error occurred.

MPI_ERR_IO An internal HPSS error occurred.

MPI_ERR_NOT_INITIALIZED MPI (MPI-IO) is not initialized.

The following errors can occur with any collective call:

MPI_ERR_DUP_CLIENT Duplicate collective operation for a client process.

MPI_ERR_EXPECTED_ATOMICITY

Collective call to MPI_File_set_atomicity expected.

MPI_ERR_EXPECTED_CLOSE Collective call to MPI_File_close expected.

MPI_ERR_EXPECTED_OPEN Collective call to MPI_File_open expected.

MPI_ERR_EXPECTED_SEEK Collective call to MPI_File_seek_shared expected.

MPI_ERR_EXPECTED_SIZE Collective call to MPI_File_set_size or MPI_File_preallocate
expected.

MPI_ERR_EXPECTED_SYNC Collective call to MPI_File_sync expected.

MPI_ERR_EXPECTED_VIEW Collective call to MPI_File_set_view expected.

MPI_ERR_MEMBER Client is not a member of the communicator group for an

open file.

See 6.1.5 “Error Handling” on the effect on error returns from setting file error handlers.

6.1.1. File Manipulation

The APIs described in this section are used to open (including create), close, and delete files, and to set or

get characteristics of the file that control data layout and access within the file. The characteristics of an

open file include its path name within the file system on which it is stored, its set of participating pro-

cesses, its access mode and permissions, and its size. These characteristics are specified or determined at

the time that the file is opened. Each process that participates in a file open is also allowed to specify a file

view.

Chapter 6. MPI-IO API Functions

6-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

The following definitions will clarify these concepts:

An MPI-IO file is an ordered collection of typed data items. MPI-IO supports random or sequential access

to any integral set of these items. A file is opened collectively by a group of processes. A file handle is an

opaque object created by MPI_File_open and freed by MPI_File_close. All operations on an open file ref-

erence the file through the file handle.

A view defines the current set of data visible and accessible from an open file as an ordered set of etypes.

Each process has its own view of the file, defined by: a displacement, an etype, and a filetype. The pattern

described by a filetype is repeated, beginning at the displacement, to define the view.

A file displacement is an absolute byte position relative to the beginning of a file. The displacement defines

the byte location where a view begins.

An etype is the unit of data access and positioning. It can be any MPI predefined or derived datatype.

Data access is performed in etype units, reading or writing whole data items of type etype. Offsets are

expressed as a count of etypes; file pointers point to the beginning of etypes.

A filetype is the basis for partitioning a file among processes and defines a template for accessing the file. A

filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same

etype. Note that HPSS limits the number of holes that a file can contain (approximately 1000). This limit

may preclude some noncollective writes for some filetype choices, even though complementary writes by

other processes will fill the holes. In this case, collective writes should be used to avoid the file fragmenta-

tion.

An offset is a position in the file relative to the current view, expressed as a count of etypes. Holes in the

view’s filetype are skipped when calculating this position. Offset 0 is the location of the first etype visible

in the view.

The size of a file is measured in bytes from the beginning of the file. A newly created file has a size of zero

bytes. Using the size as an absolute displacement gives the position of the byte immediately following the

last byte in the file. For any given view, the end of file is the offset of the first etype accessible in the current

view starting after the last byte in the file. The end of file for a given view is its end of view.

A file pointer is an implicit offset maintained by MPI-IO. An individual file pointer is a file pointer that is

local to each process that opened a file. A shared file pointer is a file pointer that is shared by the group of

processes that opened a file.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-5
Release 4.2, Revision 1

6.1.1.1. MPI_File_open

Purpose
Optionally create and open an MPI-IO file.

Synopsis
#include <mpio.h>

int
MPI_File_open(

MPI_Comm comm, /* IN */

char * filename, /* IN */

int amode, /* IN */

MPI_Info info, /* IN */

MPI_File * fh); /* OUT */

Description
MPI_File_open opens the file identified by filename on all processes in the comm communicator

(which may be MPI_COMM_SELF). MPI_File_open is a collective routine: all processes in the

communicator must provide the same value for amode and for filename (i.e., filenames on all

processes must be the same text). Values for info may vary, depending on the MPI_Info keys spec-

ified (see 6.1.6, “File Hints”). comm must be an intracommunicator. The file handle returned in fh
can subsequently be used to access the file until the file is closed using MPI_File_close.

In general, the amode flags have the same semantics as their POSIX counterparts. Exactly one of

MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY must be specified. It is

erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in conjunction with

MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL together with

MPI_MODE_RDWR. The MPI_MODE_UNIQUE_OPEN mode allows an implementation to opti-

mize access by eliminating the overhead of file locking; it is erroneous to open a file in this mode if

the file can be concurrently opened elsewhere. The MPI_MODE_SEQUENTIAL mode allows an

implementation to optimize access to sequential devices; it is erroneous to attempt nonsequential

access to a file that has been opened in this mode.

Initially, all processes view the file as a linear byte stream, and each process views data in its own

native data representation. The file view can be changed using MPI_File_set_view. Files are

opened by default using nonatomic file consistency semantics; more stringent atomic mode consis-

tency semantics can be set using MPI_File_set_atomicity.

Parameters
comm MPI communicator specifying which processes will access

the file.

filename HPSS path name of the file (length must be less than or equal

to HPSS_MAX_PATH_NAME).

amode Access mode of the file; it is a bit vector OR of one or more of

the following flags:

MPI_MODE_RDONLY - open file for reading only.

MPI_MODE_RDWR - open file for reading and writing.

Chapter 6. MPI-IO API Functions

6-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_MODE_WRONLY - open file for writing only.

MPI_MODE_CREATE - create file if it does not already exist.

MPI_MODE_EXCL - error if creating file that already exists.

MPI_MODE_DELETE_ON_CLOSE - delete file when file is

closed.

MPI_MODE_UNIQUE_OPEN - file will not be concurrently

opened elsewhere. Enables automatic file caching.

MPI_MODE_SEQUENTIAL - file will only be accessed

sequentially.

MPI_MODE_APPEND - set initial position of all file pointers

to end of file.

info Handle for opaque data structure containing hints regarding

file access patterns and file system specifics. The constant

MPI_INFO_NULL can be used when no hints need to be

specified. See 6.1.6. for more information.

fh Returned file handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG filename or fh argument is NULL or comm argument is

MPI_COMM_NULL.

MPI_ERR_ACCESS Access permission is denied to the file or to a component of

the filename path prefix.

MPI_ERR_AMODE Invalid amode argument.

MPI_ERR_BAD_FILE Invalid filename argument (empty or too long).

MPI_ERR_COMM Invalid comm argument.

MPI_ERR_EISDIR The specified filename is a directory.

MPI_ERR_EMFILE No more file descriptors available.

MPI_ERR_ENFILE Too many open files in the system.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_ENOTDIR A component of the filename path is not a directory.

MPI_ERR_FILE_EXISTS MPI_MODE_CREATE and MPI_MODE_EXCL are specified

and the file already exists.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-7
Release 4.2, Revision 1

MPI_ERR_HINTS Invalid info argument.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NO_SUCH_FILE MPI_MODE_CREATE is not set and the named file does not

exist or a component of the named file path does not exist.

MPI_ERR_NOT_SAME amode or filename arguments or info argument key values do

not match across processes.

See Also
MPI_File_close, MPI_File_set_view, MPI_File_set_info.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.1.2. MPI_File_close

Purpose
Close an MPI-IO file.

Synopsis
#include <mpio.h>

int
MPI_File_close(

MPI_File * fh /* IN/OUT */

);

Description
MPI_File_close closes the file associated with fh. If the file was opened with access mode

MPI_MODE_DELETE_ON_CLOSE, the file is deleted. The file handle fh is set to

MPI_FILE_NULL.

The user is responsible for ensuring that all outstanding requests associated with fh have

completed before calling MPI_File_close.

Parameters
fh File handle of file to be closed.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG fh argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW There are uncompleted read or write operations pending for

fh.

See Also
MPI_File_open, MPI_File_delete.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-9
Release 4.2, Revision 1

6.1.1.3. MPI_File_delete

Purpose
Delete an MPI-IO file.

Synopsis
#include <mpio.h>

int
MPI_File_delete(

char * filename /* IN */

MPI_Info info /* IN */

);

Description
MPI_File_delete removes the file identified by filename. The info argument can be used to provide

hints regarding file system specifics; the constant MPI_INFO_NULL can be used when no hints

need to be specified.

Parameters
filename HPSS path name of the file to delete.

info File hints.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG filename argument is NULL.

MPI_ERR_ACCESS Access permission is denied to the file or to a component of

the filename path prefix.

MPI_ERR_BAD_FILE Invalid filename (empty or too long).

MPI_ERR_EISDIR The specified filename is a directory.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_ENOTDIR A component of the filename path is not a directory.

MPI_ERR_NO_SUCH_FILE Named file does not exist.

See Also
MPI_File_open, MPI_File_close.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Currently, the implementation ignores any hints in MPI_File_delete.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-11
Release 4.2, Revision 1

6.1.1.4. MPI_File_set_size

Purpose
Change the size of an open file.

Synopsis
#include <mpio.h>

int
MPI_File_set_size(

MPI_File fh, /* IN/OUT */

MPI_Offset size /* IN */

);

Description
MPI_File_set_size resizes the file associated with the file handle fh. size is measured in bytes from

the beginning of the file. All participating processes must specify the same value for size. Regions

of the file that have been previously written are unaffected. If the new size is smaller than the

current file size, the file is truncated. If the new size is greater than the current file size, the file size

becomes size; the values of data in the new regions in the file are undefined, and until written, it is

not guaranteed that the file space for the new regions is allocated. Use MPI_File_preallocate to

force the file space to be reserved.

MPI_File_set_size does not affect the individual or shared file pointers.

It is erroneous to call MPI_File_set_size while uncompleted nonblocking or split collective calls

are pending for fh.

Parameters
fh File handle.

size New size of the file.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME size arguments do not match across processes.

MPI_ERR_OFFSET Negative size specified.

MPI_ERR_PENDING_RW There are uncompleted read or write operations pending for

fh.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

Chapter 6. MPI-IO API Functions

6-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

See Also
MPI_File_get_size, MPI_File_preallocate.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-13
Release 4.2, Revision 1

6.1.1.5. MPI_File_preallocate

Purpose
Change the allocated size of an open file.

Synopsis
#include <mpio.h>

int
MPI_File_preallocate(

MPI_File fh, /* IN/OUT */

MPI_Offset size /* IN */

);

Description
MPI_File_preallocate ensures that storage space is allocated for the first size bytes of the file asso-

ciated with fh. All participating processes must specify the same value for size. Regions of the file

that have been previously written are unaffected. The values of data in the new regions of the file

are undefined. If size is less than or equal to the current file size, the file size is unchanged. If size
is greater than the current file size, the file size increases to size.

MPI_File_preallocate does not affect the individual or shared file pointers.

It is erroneous to call MPI_File_preallocate while uncompleted nonblocking or split collective calls

are pending for fh.

Parameters
fh File handle.

size Allocated size to ensure for the file.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME size arguments do not match across processes.

MPI_ERR_OFFSET Negative size specified.

MPI_ERR_PENDING_RW There are uncompleted read or write operations pending for

fh.

MPI_ERR_UNSUPPORTED_OPERATION

Chapter 6. MPI-IO API Functions

6-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_get_size, MPI_File_set_size.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-15
Release 4.2, Revision 1

6.1.1.6. MPI_File_get_size

Purpose
Get the current size of an open file.

Synopsis
#include <mpio.h>

int
MPI_File_get_size(

MPI_File fh, /* IN */

MPI_Offset * size /* OUT */

);

Description
MPI_File_get_size returns in size the current size in bytes of the file associated with the file handle

fh.

Parameters
fh File handle.

size Returned size of the file.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG size argument is NULL.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_set_size, MPI_File_preallocate.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.1.7. MPI_File_get_group

Purpose
Get the communicator group associated with an open file.

Synopsis
#include <mpio.h>

int
MPI_File_get_group(

MPI_File fh, /* IN */

MPI_Group * group /* OUT */

);

Description
MPI_File_get_group returns in group a duplicate of the group of the MPI communicator used to

open the file associated with fh. The user is responsible for freeing group.

Parameters
fh File handle.

group Returned communicator group.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG group argument is NULL.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_open.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-17
Release 4.2, Revision 1

6.1.1.8. MPI_File_get_amode

Purpose
Get the mode associated with an open file.

Synopsis
#include <mpio.h>

int
MPI_File_get_amode(

MPI_File fh, /* IN */

int * amode /* OUT */

);

Description
MPI_File_get_amode returns in amode the mode associated with the open file fh.

Parameters
fh File handle.

amode Returned file mode.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG amode argument is NULL.

MPI_ERR_FILE Invalid file handle.

I am assuming we can just get comm from local ft. Otherwise, add an MPI_ERR_ENOMEM from

sending a message.

See Also
MPI_File_open.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.1.9. MPI_File_set_info

Purpose
Set new hints for an open file.

Synopsis
#include <mpio.h>

int
MPI_File_set_info(

MPI_File fh, /* IN/OUT */

MPI_Info info /* IN */

);

Description
MPI_File_set_info updates the file hints associated with the open file fh. The info object may be

different on each process, but any info key values that are required to be the same on all processes

(see 6.1.6 “File Hints”) must appear in each process’s info object.

Parameters
fh File handle.

info File hints regarding file access patterns and file system

specifics.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME info argument key values do not match across processes.

See Also
MPI_File_get_info, MPI_File_open, MPI_File_set_view.

Notes
Collective; nonsynchronizing.

Currently the implementation does not allow changing any of the file hints on an open file.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-19
Release 4.2, Revision 1

6.1.1.10. MPI_File_get_info

Purpose
Get the file hints associated with an open file.

Synopsis
#include <mpio.h>

int
MPI_File_get_info(

MPI_File fh, /* IN */

MPI_Info * info_used/* OUT */

);

Description
MPI_File_get_info returns in info_used a handle for a new info object containing the current setting

of all hints associated with the open file fh. The user is responsible for freeing info_used via

MPI_Info_free.

Parameters
fh File handle.

info_used Returned handle to the current file hints.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG info_used argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_open, MPI_File_set_info, MPI_File_set_view.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.1.11. MPI_File_set_view

Purpose
Change the view of the data in an open file.

Synopsis
#include <mpio.h>

int
MPI_File_set_view(

MPI_File fh, /* IN/OUT */

MPI_Offset disp, /* IN */

MPI_Datatype etype, /* IN */

MPI_Datatype filetype, /* IN */

char * datarep, /* IN */

MPI_Info info /* IN */

);

Description
MPI_File_set_view changes the process’s view of the data in the open file fh. The start of the view

is set to disp (absolute offset in bytes from the beginning of the file); the type of data is set to etype;

the distribution of data to processes is set to filetype; the representation of data in the file is set to

datarep; the info argument specifies file access patterns or file system specifics to direct optimization.

Each participating process must specify the same datarep and the same extents of etype in the file

data representation, but disp, filetype, and info may vary. The individual file pointers and the shared

file pointer are reset to zero.

The datatypes for etype and filetype must be committed. An etype is the unit of data access and posi-

tioning; offsets are expressed as a count of etypes; file pointers point to the beginning of etypes. All

etype typemap displacements must be nonnegative and monotonically nondecreasing. The filetype
must be composed of etypes. In addition, the extent of any hole in the filetype must be a multiple of

the etype’s extent. The filetype typemap displacements need not be distinct, but they cannot be

negative and must be monotonically nondecreasing. If the file is opened for writing, neither the

etype nor the filetype is permitted to contain overlapping regions. It is erroneous to use absolute

addresses in the construction of etype and filetype.

If MPI_MODE_SEQUENTIAL was specified when the file was opened, the special displacement

MPI_DISPLACEMENT_CURRENT must be passed in disp. It is erroneous to use the shared file

pointer data access routines unless identical values for disp and filetype are given (i.e., all processes

use the same file view).

It is erroneous to call MPI_File_set_view while uncompleted nonblocking or split collective calls

are pending for fh.

Parameters
fh File handle.

disp Byte location of file offset zero.

etype MPI_Datatype file unit.

filetype MPI_Datatype that describes process’s accessible etypes.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-21
Release 4.2, Revision 1

datarep Data representation to be used for file data. See 6.1.3. “File

Interoperability”

info Handle for opaque data structure containing information

regarding file access patterns and file system specifics.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG datarep argument is NULL or empty, or etype or filetype argu-

ment is MPI_DATATYPE_NULL.

MPI_ERR_DISPLACEMENT Invalid disp.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_ETYPE Invalid etype.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_FILETYPE Invalid filetype.

MPI_ERR_HINTS Invalid info.

MPI_ERR_NOT_SAME datarep or etype arguments or info argument key values do not

match across processes.

MPI_ERR_PENDING_RW There are uncompleted read or write operations pending for

fh.

MPI_ERR_UNSUPPORTED_DATAREP

Invalid datarep.

See Also
MPI_File_open, MPI_File_get_view, MPI_File_get_type_extent, MPI_Register_datarep.

Notes
Collective, synchronizing.

Chapter 6. MPI-IO API Functions

6-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.1.12. MPI_File_get_view

Purpose
Get the current view of the data in an open file.

Synopsis
#include <mpio.h>

int
MPI_File_get_view(

MPI_File fh, /* IN */

MPI_Offset* disp, /* OUT */

MPI_Datatype * etype, /* OUT */

MPI_Datatype * filetype, /* OUT */

char * datarep /* OUT */

);

Description
MPI_File_get_view returns the process’s current view of the data in the open file fh. The current

value of the displacement is returned in disp. The etype and filetype returned are new datatypes with

typemaps equal to the typemaps of the current etype and filetype of the view, respectively; the user

is responsible for freeing derived datatypes that are returned. The etype and filetype returned are

both committed. The data representation is returned in datarep; the user is responsible for ensuring

that datarep is large enough to hold the data representation string (i.e., allows up to

MPI_MAX_DATAREP_STRING characters).

Parameters
fh File handle.

disp The returned displacement.

etype The returned etype.

filetype The returned filetype.

datarep The returned data representation.

Return Values
Upon successful completion, returns MPI_SUCCESS. Otherwise, it returns one of the error condi-

tions below.

Error Conditions
MPI_ERR_ARG disp, etype, filetype, or datarep argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_open, MPI_File_set_view.

Notes

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-23
Release 4.2, Revision 1

Noncollective.

Chapter 6. MPI-IO API Functions

6-24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2. File Access

The APIs in this section are the MPI-IO data access routines. Data is moved between files and processes by

calling read and write routines. Read routines move data from a file into memory. Write routines move

data from memory into a file. The file is designated by a file handle, fh. The location of the file data is spec-

ified by an offset, which is always in etype units relative the the current view. The data in memory is spec-

ified by a triple: buf, count, and datatype. Upon completion, the amount of data accessed by the calling

process is returned in a status.

A data access routine attempts to transfer count data items of type datatype between the user’s buffer buf
and the file. The layout of the data in the user’s buffer is described by datatype, which must be a commit-

ted datatype. The type signature of datatype must match the type signature of some number of contiguous

copies of the etype of the current view.

For a blocking I/O call, the status is returned directly; otherwise, it is returned from a call to MPI_Wait or

MPI_Test (or one of their variants). The number of datatype entries and predefined elements actually read

can be extracted from the status, using the routines MPI_Get_count or MPI_Get_elements, respectively.

To detect the end of file, an application can detect when the amount of data read is less than what was

requested.

For nonblocking calls, the MPI_Error field of the returned status will contain error information, if the

return value of the MPI completion call is MPI_ERR_IN_STATUS. For blocking calls, the error information

is just the return value of the function.

MPI-2 defines special versions of collective I/O operations that are called split-collective. These opera-

tions are split by having an initiating function to begin the I/O and a completing function to end the I/O.

MPI-2 allows these operations to be implemented as either blocking or nonblocking. In this implementa-

tion, the initiating function is nonblocking, and the completing function is blocking. Hence, the status

information is managed the same as for nonblocking calls.

It is erroneous to specify a datatype for reading that contains overlapping regions. If

MPI_MODE_SEQUENTIAL was specified when the file was opened, it is erroneous to invoke a read or

write routine that uses an explicit offset or an offset specified by an individual file pointer.

Each data access call can be further characterized by its method of positioning, synchronization, and coor-

dination.

Positioning

For routines that use explicit offsets as an argument, that argument value explicitly specifies the current

offset in etypes to be used. No file pointer is used or updated.

For routines that use individual file pointers, MPI-IO maintains one individual file pointer per process per

file handle. The current value of this pointer implicitly specifies the current offset in etypes to be used by

these data access routines. After an individual file pointer operation is initiated, the individual file pointer

is updated to point to the next etype after the last one that will be accessed, relative to the current process’

file view. Only the individual file pointers are updated; the shared file pointer is not used or updated.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-25
Release 4.2, Revision 1

For routines that use shared file pointers, MPI-IO maintains exactly one shared file pointer per file handle.

The current value of this pointer implicitly specifies the current offset in etypes to be used by these data

access routines. After a shared file pointer operation is initiated, the shared file pointer is updated to point

to the next etype after the last one that will be accessed, relative to the current file view. It is erroneous to

use the shared file pointer routines if not all processes use the same file view. The effect of multiple calls to

shared file pointer routines is defined to behave as if the calls were serialized; for noncollective routines,

the serialization ordering is not deterministic. Only the shared file pointer is updated; the individual file

pointers are not used or updated.

Synchronism

A blocking I/O call will not return until the I/O request is completed.

A nonblocking I/O call initiates an I/O operation but does not wait for it to complete. A separate request

complete call (MPI_Wait, MPI_Test, or any of their variants) is needed to complete the I/O request. It is

erroneous to access the local buffer of a nonblocking data access operation, or to use that buffer as the

source or target of other communications, between the initiation and completion of the operation.

Split-collective calls are implemented essentially as nonblocking calls, with the MPI_File_R/W_begin call

initiating the I/O operation, and the MPI_File_R/W_end call completing the operation. The MPI_File_R/
W_end call will block until the I/O has completed.

Coordination

Each data access is either collective or noncollective. For collective calls, all processes that participated in

the file open must participate in the data access.

The completion of a noncollective call depends only on the activity of the calling process. However, the

completion of a collective call may depend on the activity of the other processes participating in the collec-

tive call.

In general, collective calls may perform much better than their noncollective counterparts. In particular,

collective calls where the file views match the striping on the HPSS file system and the data is distributed

across client processes (user buffer datatypes) in uniformly striped chunks will achieve the best perfor-

mance.

Chapter 6. MPI-IO API Functions

6-26 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.1. MPI_File_read_at

Purpose
Read a file at an explicit offset, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_read_at(

MPI_File fh, /* IN */

MPI_Offset offset, /* IN */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_at attempts to read from the file associated with fh at the specified offset for a total

number of count data items having datatype type into the user’s buffer buf. The offset is in etype

units relative to the current view. The data is read from those parts of the file specified by the

current view. Data is stored into buf according to the pattern specified by datatype. The number of

datatype elements actually read is returned in status. All other fields of status are undefined.

Parameters
fh File handle.

offset File offset in etypes at which to begin reading.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-27
Release 4.2, Revision 1

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read_at_all, MPI_File_iread_at, MPI_File_read_at_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.2. MPI_File_read_at_all

Purpose
Read from a file at explicit offsets, collectively.

Synopsis
#include <mpio.h>

int
MPI_File_read_at_all(

MPI_File fh, /* IN */

MPI_Offset offset, /* IN */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_at_all attempts to read collectively from the file associated with fh. Each process

reads at a specified offset for a total number of count data items having datatype type into the user’s

buffer buf. The offset is in etype units relative to each process’s current view. The data is read from

those parts of the file specified by each process’s current view. Data is stored into buf according to

the pattern specified by datatype.

Each process may pass different argument values for offset, datatype and count. After all the

processes have issued their respective calls, each process attempts to read.

For each process, the number of datatype elements actually read is returned in status. All other

fields of status are undefined.

Parameters
fh File handle.

offset File offset in etypes at which to begin reading.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-29
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read_at, MPI_File_read_at_all_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-30 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.3. MPI_File_write_at

Purpose
Write to a file at an explicit offset, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_write_at(

MPI_File fh, /* IN/OUT */

MPI_Offset offset, /* IN */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_at attempts to write into the file associated with fh at the specifiec offset for a total

number of count data items having datatype type from the user’s buffer buf. The offset is in etype

units relative to the current view. The data is written into those parts of the file specified by the

current view. Data is read from buf according to the pattern specified by datatype. The number of

datatype elements actually written is returned in status. All other fields of status are undefined.

Parameters
fh File handle.

offset File offset in etypes at which to begin writing.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying how data is laid out in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-31
Release 4.2, Revision 1

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_at_all, MPI_File_iwrite_at, MPI_File_write_at_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-32 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.4. MPI_File_write_at_all

Purpose
Write to a file at explicit offsets, collectively.

Synopsis
#include <mpio.h>

int MPI_File_write_at_all(
MPI_File fh, /* IN/OUT */

MPI_Offset offset, /* IN */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_at_all attempts to write collectively into the file associated with fh. Each process

writes at a specified offset for a total number of count data items having datatype type from the user’s

buffer buf. The offset is in etype units relative to each process’s current view. The data is written

into those parts of the file specified by each process’s current view. Data is read from buf according

to the pattern specified by datatype.

Each process may pass different argument values for offset, datatype and count. After all the

processes have issued their respective calls, each process attempts to write.

For each process, the number of datatype elements actually written is returned in status. All other

fields of status are undefined.

Parameters
fh File handle.

offset File offset in etypes at which to begin writing.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying how data is laid out in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-33
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_at, MPI_FIle_iwrite_at, MPI_File_write_at_all_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-34 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.5. MPI_File_iread_at

Purpose
Read a file at an explicit offset, noncollectively and without blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iread_at(

MPI_File fh, /* IN */

MPI_Offset offset, /* IN */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iread_at initiates a read from the file associated with fh at the specified offset for a total

number of count data items having datatype type into the user’s buffer buf. The offset is in etype

units relative to the current view. The data is read from those parts of the file specified by the

current view. Data is stored into buf according to the pattern specified by datatype.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the read or wait for its completion. The

number of datatype elements actually read or error information regarding the completion of the

read is returned through the status argument to MPI_Test or MPI_Wait.

Parameters
fh File handle.

offset File offset in etypes at which to begin reading.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or request argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-35
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read_at, MPI_File_read_at_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-36 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.6. MPI_File_iwrite_at

Purpose
Write to a file at an explicit offset, noncollectively and without blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iwrite_at(

MPI_File fh, /* IN/OUT */

MPI_Offset offset, /* IN */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iwrite_at initiates a write into the file associated with fh at the offset position for a total

number of count data items having datatype type from the user’s buffer buf. The offset is in etype

units relative to the current view. The data is written into those parts of the file specified by the

current view. Data is read from buf according to the pattern specified by datatype.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the write or wait for its completion. The

number of datatype elements actually written or error information regarding the completion of the

write is returned through the status argument to MPI_Test or MPI_Wait.

Parameters
fh File handle.

offset File offset in etypes at which to begin writing.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying how data is laid out in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or request argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-37
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_at, MPI_File_write_at_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-38 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.7. MPI_File_read

Purpose
Read a file at the offset specified by the file’s individual file pointer, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_read(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read attempts to read from the file associated with fh at the offset specified by the current

individual file pointer position for a total number of count data items having datatype type into the

user’s buffer buf. The offset is in etype units relative to the current view. The data is read from

those parts of the file specified by the current view. Data is stored into buf according to the pattern

specified by datatype. The number of datatype elements actually read is returned in status. All

other fields of status are undefined.

The individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually read), provided the read request was initiated without error.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-39
Release 4.2, Revision 1

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read_all, MPI_File_iread, MPI_File_read_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-40 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.8. MPI_File_read_all

Purpose
Read a file at the offsets specified by the file’s individual file pointers, collectively.

Synopsis
#include <mpio.h>

int
MPI_File_read_all(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_all attempts to read collectively from the file associated with fh. Each process reads

at the offset specified by its current individual file pointer position for a total number of count data

items having datatype type into the user’s buffer buf. The offset is in etype units relative to each

process’s current view. The data is read from those parts of the file specified by each process’s

current view. Data is stored into buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to read.

Each individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually read), provided the read request was initiated without error.

For each process, the number of datatype elements actually read is returned in status. All other

fields of status are undefined.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-41
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read, MPI_File_iread, MPI_File_read_all_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-42 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.9. MPI_File_write

Purpose
Write a file at the offset specified by the file’s individual file pointer, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_write(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write attempts to write into the file associated with fh at the offset specified by the

current individual file pointer position for a total number of count data items having datatype type

from the user’s buffer buf. The offset is in etype units relative to the current view. The data is

written into those parts of the file specified by the current view. Data is read from buf according to

the pattern specified by datatype. The number of datatype elements actually written is returned in

status. All other fields of status are undefined.

The individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually written), provided the write request was initiated without error.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying how data is laid out in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-43
Release 4.2, Revision 1

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_all, MPI_File_iwrite, MPI_File_write_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-44 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.10. MPI_File_write_all

Purpose
Write a file at the offsets specified by the file’s individual file pointers, collectively.

Synopsis
#include <mpio.h>

int
MPI_File_write_all(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_all attempts to write collectively into the file associated with fh. Each process

writes at the offset specified by its current individual file pointer position for a total number of

count data items having datatype type from the user’s buffer buf. The offset is in etype units relative

to each process’s current view. The data is written into those parts of the file specified by each

process’s current view. Data is read from buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to write.

Each individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually written), provided the write request was initiated without error.

For each process, the number of datatype elements actually written is returned in status. All other

fields of status are undefined.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying how data is laid out in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-45
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write, MPI_File_iwrite, MPI_File_write_all_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-46 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.11. MPI_File_iread

Purpose
Read a file at the offset specified by the file’s individual file pointer, noncollectively and without

blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iread(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iread initiates a read from the file associated with fh at the offset specified by the current

individual file pointer position for a total number of count data items having datatype type into the

user’s buffer buf. The offset is in etype units relative to the current view. The data is read from

those parts of the file specified by the current view. Data is stored into buf according to the pattern

specified by datatype.

The individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually read), provided the read request was initiated without error.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the read or wait for its completion. The

number of datatype elements actually read or error information regarding the completion of the

read is returned through the status argument to MPI_Test or MPI_Wait.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or request argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-47
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read, MPI_File_read_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-48 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.12. MPI_File_iwrite

Purpose
Write a file at the offset specified by the file’s individual file pointer, noncollectively and without

blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iwrite(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iwrite initiates a write into the file associated with fh at the offset specified by the current

individual file pointer position for a total number of count data items having datatype type from the

user’s buffer buf. The offset is in etype units relative to the current view. The data is written into

those parts of the file specified by the current view. Data is read from buf according to the pattern

specified by datatype.

The individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually written), provided the write request was initiated without error.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the write or wait for its completion. The

number of datatype elements actually written or error information regarding the completion of the

write is returned through the status argument to MPI_Test or MPI_Wait.

Parameters
fh File handle.

buf User’s buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or request argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-49
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write, MPI_File_write_all_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-50 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.13. MPI_File_seek

Purpose
Set an individual file pointer of a file.

Synopsis
#include <mpio.h>

int
MPI_File_seek(

MPI_File fh, /* IN/OUT */

MPI_Offset offset, /* IN */

int whence /* IN */

);

Description
MPI_File_seek updates the individual file pointer associated with fh according to whence and offset
for one process. The offset can be negative, which allows seeking backwards.

It is erroneous to seek to a negative position in the view.

The end of the file is defined to be the position of the next elementary data item, relative to the

current view, following the last whole elementary data item accessible. When seeking relative to

end of file, users should be aware that the MPI-2 definition of this differs from the usual definition

of EOF for sequentially-accessed files. Each process may have a different view for a given open file,

depending on their filetypes. A file may contain data located beyond an end of file for one process

that is visible only to other processes.

Parameters
fh File handle.

offset Number of etypes to add or subtract from the position speci-

fied by whence.

whence Flag specifying one of three locations in the file:

MPI_SEEK_SET - the pointer is set to offset.

MPI_SEEK_CUR - the pointer is set to the current pointer

position plus offset.

MPI_SEEK_END - the pointer is set to the end of file plus

offset.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_FILE Invalid file handle.

MPI_ERR_OFFSET Invalid offset argument.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-51
Release 4.2, Revision 1

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

MPI_ERR_WHENCE Invalid whence argument.

See Also
MPI_File_get_position, MPI_File_get_byte_offset, MPI_File_set_view.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-52 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.14. MPI_File_get_position

Purpose
Get the current position of an individual file pointer.

Synopsis
#include <mpio.h>

int
MPI_File_get_position(

MPI_File fh, /* IN */

MPI_Offset * offset /* OUT */

);

Description
MPI_File_get_position returns in offset the current position of the individual file pointer associated

with fh, where the offset is returned in etype units relative to the current view.

Parameters
fh File handle.

offset Returned offset in etypes.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG offset argument is NULL.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_seek, MPI_File_set_view, MPI_File_get_byte_offset.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-53
Release 4.2, Revision 1

6.1.2.15. MPI_File_get_byte_offset

Purpose
Get the current position of an individual file pointer.

Synopsis
#include <mpio.h>

int
MPI_File_get_byte_offset(

MPI_File fh, /* IN */

MPI_Offset offset, /* IN */

MPI_Offset * disp /* OUT */

);

Description
MPI_File_get_byte_offset converts a view-relative offset for the file associated with fh into an abso-

lute byte position, returned in disp.

Parameters
fh File handle.

offset Offset in etypes to convert.

disp Returned offset in bytes.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG disp argument is NULL.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_seek, MPI_File_set_view, MPI_File_get_position.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-54 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.16. MPI_File_read_shared

Purpose
Read a file at the offset specified by the file’s shared file pointer, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_read_shared(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_shared attempts to read from the file associated with fh at the offset specified by

the current shared file pointer position for a total number of count data items having datatype type

into the user’s buffer buf. The offset is in etype units relative to the current view. The data is read

from those parts of the file specified by the current view. Data is stored into buf according to the

pattern specified by datatype. The number of datatype elements actually read is returned in status.

All other fields of status are undefined.

The shared file pointer is incremented by the amount of data requested (not necessarily the amount

actually read), provided the read request was initiated without error.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-55
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_iread_shared, MPI_File_read_ordered, MPI_File_read_ordered_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-56 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.17. MPI_File_write_shared

Purpose
Write a file at the offset specified by the file’s shared file pointer, noncollectively.

Synopsis
#include <mpio.h>

int
MPI_File_write_shared(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_shared attempts to write into the file associated with fh at the offset specified by

the current shared file pointer position for a total number of count data items having datatype type

from the user’s buffer buf. The offset is in etype units relative to the current view. The data is

written into those parts of the file specified by the current view. Data is read from buf according to

the pattern specified by datatype. The number of datatype elements actually written is returned in

status. All other fields of status are undefined.

The shared file pointer is incremented by the amount of data requested (not necessarily the amount

actually written), provided the write request was initiated without error.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-57
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_Iwrite_shared, MPI_File_write_ordered, MPI_File_write_ordered_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-58 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.18. MPI_File_iread_shared

Purpose
Read a file at the offset specified by the file’s shared file pointer, noncollectively and without

blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iread_shared(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iread_shared initiates a read from the file associated with fh at the offset specified by the

current shared file pointer position for a total number of count data items having datatype type into

the user’s buffer buf. The offset is in etype units relative to the current view. The data is read from

those parts of the file specified by the current view. Data is stored into buf according to the pattern

specified by datatype

The shared file pointer is incremented by the amount of data requested (not necessarily the amount

actually read), provided the read request was initiated without error.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the read or wait for its completion. The

number of datatype elements actually read or error information regarding the completion of the

read is returned through the status argument to MPI_Test or MPI_Wait.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-59
Release 4.2, Revision 1

MPI_ERR_ARG buf or request argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_read_shared, MPI_File_read_ordered, MPI_File_read_ordered_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-60 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.19. MPI_File_iwrite_shared

Purpose
Write a file at the offset specified by the file’s shared file pointer, noncollectively and without

blocking.

Synopsis
#include <mpio.h>

int
MPI_File_iwrite_shared(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Request * request /* OUT */

);

Description
MPI_File_iwrite_shared initiates a write into the file associated with fh at the offset specified by

the current shared file pointer position for a total number of count data items having datatype type

from the user’s buffer buf. The offset is in etype units relative to the current view. The data is

written into those parts of the file specified by the current view. Data is read from buf according to

the pattern specified by datatype.

The shared file pointer is incremented by the amount of data requested (not necessarily the amount

actually written), provided the write request was initiated without error.

A request handle request is returned, which can be used later as the argument to MPI_Test or

MPI_Wait (or any of their variants) to query the status of the write or wait for its completion. The

number of datatype elements actually written or error information regarding the completion of the

write is returned through the status argument to MPI_Test or MPI_Wait.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

request Returned request handle.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-61
Release 4.2, Revision 1

MPI_ERR_ARG buf or request argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_shared, MPI_File_write_ordered, MPI_File_write_ordered_begin.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-62 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.20. MPI_File_read_ordered

Purpose
Read a file at the offset specified by the file’s shared file pointer, collectively.

Synopsis
#include <mpio.h>

int
MPI_File_read_ordered(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_ordered attempts to read collectively from the file associated with fh. For each

process, the offset in the file at which data is read is the position at which the shared file pointer

would be after all processes whose ranks within the group are less than that of this process have

read their data. Each process reads for a total number of count data items having datatype type into

the user’s buffer buf. The data is read from those parts of the file specified by the current view. Data

is stored into buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to read.

The shared file pointer is updated by the amounts of data requested by all processes of the group.

For each process, the number of datatype elements actually read is returned in status.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-63
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_read_shared, MPI_File_iread_shared, MPI_File_read_ordered_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-64 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.21. MPI_File_write_ordered

Purpose
Write a file at the offset specified by the file’s shared file pointer, collectively.

Synopsis
#include <mpio.h>

int
MPI_File_write_ordered(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatypedatatype,/* IN */

MPI_Status *status/* OUT */

);

Description
MPI_File_write_ordered attempts to write collectively into the file associated with fh. For each

process, the location in the file at which data is written is the position at which the shared file

pointer would be after all processes whose ranks within the group are less than that of this process

have written their data. Each process writes for a total number of count data items having datatype
type from the user’s buffer buf. The data is written into those parts of the file specified by the

current view. Data is read from buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to write.

The shared file pointer is updated by the amounts of data requested by all processes of the group.

For each process, the number of datatype elements actually written is returned in status.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf or status argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-65
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_PENDING_RW A collective operation is already pending for this file.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_shared, MPI_File_iwrite_shared, MPI_File_write_ordered_begin.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-66 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.22. MPI_File_seek_shared

Purpose
Set the current shared file pointer of a file.

Synopsis
#include <mpio.h>

int
MPI_File_seek_shared(

MPI_File fh /* IN/OUT */

int offset, /* IN */

MPI_Whence whence /* IN */

);

Description
MPI_File_seek_shared updates the shared file pointer associated with fh according to whence and

offset for all processes in the file’s communicator group. All participating processes must provide

the same values for offset and whence. The offset can be negative, which allows seeking backwards.

It is erroneous to seek to a negative position in the view.

The end of the file is defined to be the position of the next elementary data item, relative to the

current view, following the last whole elementary data item accessible. Since shared file pointers

are well-defined only when all the processes use the same view, this position will be the same for

all processes.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

offset Number of etypes to add or subtract from the location speci-

fied by whence.

whence Flag specifying one of three locations in the file:

MPI_SEEK_SET - the pointer is set to offset.

MPI_SEEK_CUR - the pointer is set to the current pointer

position plus offset.

MPI_SEEK_END - the pointer is set to the end of file plus

offset.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-67
Release 4.2, Revision 1

MPI_ERR_NOT_SAME offset and whence arguments do not match across processes.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_OFFSET Invalid offset argument.

MPI_ERR_WHENCE Invalid whence argument.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL..

See Also
MPI_File_get_position_shared.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-68 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.23. MPI_File_get_position_shared

Purpose
Get the current position of a shared file pointer.

Synopsis
#include <mpio.h>

int
MPI_File_get_position_shared(

MPI_File fh, /* IN */

MPI_Offset * offset /* OUT */

);

Description
MPI_File_get_position_shared returns in offset the current position of the shared file pointer asso-

ciated with fh, where the offset is returned in etype units relative to the current view.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

offset Returned offset in etypes.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG offset argument is NULL.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_seek_shared, MPI_File_set_view, MPI_File_get_byte_offset.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-69
Release 4.2, Revision 1

6.1.2.24. MPI_File_read_at_all_begin

Purpose
Inititiate a split-collective, explicit offset read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_at_all_begin(

MPI_File fh, /* IN */

MPI_Offset offset, /* IN */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_read_at_all_begin initiates a split-collective read from the file associated with fh. Each

process reads at a specified offset for a total number of count data items having datatype type into

the user’s buffer buf. The offset is in etype units relative to each process’s current view. The data is

read from those parts of the file specified by each process’s current view. Data is stored into buf
according to the pattern specified by datatype.

Each process may pass different argument values for offset, datatype, and count. After all the

processes have issued their respective calls, each process attempts to read.

For each process, the number of datatype elements actually read is returned by

MPI_File_read_at_all_end.

Parameters
fh File handle.

offset File offset in etypes at which to begin reading.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

6-70 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read_at, MPI_File_read_at_all_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-71
Release 4.2, Revision 1

6.1.2.25. MPI_File_read_at_all_end

Purpose
Complete a split-collective, explicit offset read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_at_all_end(

MPI_File fh, /* IN */

void * buf, /* OUT */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_at_all_end completes a split-collective read initiated by

MPI_File_read_at_all_begin.

The amount of data actually read is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_read_at_all_begin.

Notes
Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

6-72 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.26. MPI_File_write_at_all_begin

Purpose
Initiate a split-collective, explicit offset write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_at_all_begin(

MPI_File fh, /* IN/OUT */

MPI_Offset offset, /* IN */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_write_at_all_begin initiates a split-collective write into the file associated with fh. Each

process writes at a specified offset for a total number of count data items having datatype type from

the user’s buffer buf. The offset is in etype units relative to each process’s current view. The data is

written to those parts of the file specified by each process’s current view. Data is read from buf
according to the pattern specified by datatype.

Each process may pass different argument values for offset, datatype, and count. After all the

processes have issued their respective calls, each process attempts to write.

For each process, the number of datatype elements actually written is returned by

MPI_File_write_at_all_end.

Parameters
fh File handle.

offset File offset in etypes at which to begin writing.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-73
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_write_at, MPI_File_write_at_all_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-74 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.27. MPI_File_write_at_all_end

Purpose
Complete a split-collective, explicit offset write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_at_all_end(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_at_all_end completes a split-collective write initiated by

MPI_File_write_at_all_begin.

The amount of data actually written is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_at_all_begin.

Notes

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-75
Release 4.2, Revision 1

Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

6-76 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.28. MPI_File_read_all_begin

Purpose
Initiate a split-collective, individual file pointer read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_all_begin(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_read_all_begin initiates a split-collective read from the file associated with fh. Each

process reads at the offset specified by its current individual file pointer position for a total number

of count data items having datatype type into the user’s buffer buf. The offset is in etype units rela-

tive to each process’s current view. The data is read from those parts of the file specified by each

process’s current view. Data is stored into buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to read.

Each individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually read), provided the read request was initiated without error.

For each process, the number of datatype elements actually read is returned by

MPI_File_read_all_end.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-77
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_read, MPI_File_read_all_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-78 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.29. MPI_File_read_all_end

Purpose
Complete a split-collective, individual file pointer read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_all_end(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_all_end completes a split-collective read initiated by MPI_File_read_all_begin.

The amount of data actually read is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_read_all_begin.

Notes
Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-79
Release 4.2, Revision 1

6.1.2.30. MPI_File_write_all_begin

Purpose
Initiate a split-collective, individual file pointer write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_all_begin(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_write_all_begin initiates a split-collective write into the file associated with fh. Each

process writes at the offset specified by its current individual file pointer position for a total

number of count data items having datatype type from the user’s buffer buf. The offset is in etype

units relative to each process’s current view. The data is written into those parts of the file specified

by each process’s current view. Data is read from buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to write.

Each individual file pointer is incremented by the amount of data requested (not necessarily the

amount actually written), provided the write request was initiated without error.

For each process, the number of datatype elements actually written is returned by

MPI_File_write_all_end.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

MPI_ERR_BUFTYPE Invalid buffer datatype.

Chapter 6. MPI-IO API Functions

6-80 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

MPI_ERR_UNSUPPORTED_OPERATION

Operation not allowed with MPI_MODE_SEQUENTIAL.

See Also
MPI_File_write, MPI_File_write_all, MPI_File_write_all_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-81
Release 4.2, Revision 1

6.1.2.31. MPI_File_write_all_end

Purpose
Complete a split-collective, individual file pointer write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_all_end(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_all_end completes a split-collective write initiated by MPI_File_write_all_begin.

The amount of data actually written is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_all_begin.

Chapter 6. MPI-IO API Functions

6-82 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Notes
Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-83
Release 4.2, Revision 1

6.1.2.32. MPI_File_read_ordered_begin

Purpose
Initiate a split-collective, shared file pointer read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_ordered_begin(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_read_ordered_begin initiates a split-collective read from the file associated with fh. For

each process, the offset in the file at which data is read is the position at which the shared file

pointer would be after all processes whose ranks within the group are less than that of this process

have read their data. Each process reads for a total number of count data items having datatype type

into the user’s buffer buf. The data is read from those parts of the file specified by the current view.

Data is stored into buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to read.

The shared file pointer is updated by the amounts of data requested by all processes of the group.

For each process, the number of datatype elements actually written is returned by

MPI_File_read_ordered_end.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be stored.

count Number of datatype-sized chunks of data to read.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

Chapter 6. MPI-IO API Functions

6-84 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

See Also
MPI_File_read_ordered, MPI_File_read_ordered_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-85
Release 4.2, Revision 1

6.1.2.33. MPI_File_read_ordered_end

Purpose
Complete a split-collective, shared file pointer read of a file.

Synopsis
#include <mpio.h>

int
MPI_File_read_ordered_end(

MPI_File fh, /* IN/OUT */

void * buf, /* OUT */

MPI_Status * status /* OUT */

);

Description
MPI_File_read_ordered_end completes a split-collective read initiated by

MPI_File_read_ordered_begin.

The amount of data actually read is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_READ_CONVERSION

Error in user-defined read conversion function.

See Also
MPI_File_read_ordered_begin.

Notes
Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

6-86 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.34. MPI_File_write_ordered_begin

Purpose
Initiate a split-collective, shared file pointer write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_ordered_begin(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

int count, /* IN */

MPI_Datatype datatype /* IN */

);

Description
MPI_File_write_ordered_begin initiates a split-collective write into the file associated with fh. For

each process, the location in the file at which data is written is the position at which the shared file

pointer would be after all processes whose ranks within the group are less than that of this process

have written their data. Each process writes for a total number of count data items having datatype
type from the user’s buffer buf. The data is written into those parts of the file specified by the

current view. Data is read from buf according to the pattern specified by datatype.

Each process may pass different argument values for datatype and count. After all the processes

have issued their respective calls, each process attempts to write.

The shared file pointer is updated by the amounts of data requested by all processes of the group.

For each process, the number of datatype elements actually written is returned by

MPI_File_write_ordered_end.

It is erroneous to call this routine if not all processes use the same file view.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

count Number of datatype-sized chunks of data to write.

datatype MPI datatype specifying data layout in buf.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ACCESS Access permission is denied to the file.

MPI_ERR_ARG buf argument is NULL.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-87
Release 4.2, Revision 1

MPI_ERR_BUFTYPE Invalid buffer datatype.

MPI_ERR_COUNT Invalid count argument.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME_VIEW Shared file pointer operation requires all processes have the

same view.

MPI_ERR_PENDING_RW A collective operation is already pending for this fh.

See Also
MPI_File_write_ordered, MPI_File_write_ordered_end.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

6-88 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.2.35. MPI_File_write_ordered_end

Purpose
Complete a split-collective, shared file pointer write to a file.

Synopsis
#include <mpio.h>

int
MPI_File_write_ordered_end(

MPI_File fh, /* IN/OUT */

void * buf, /* IN */

MPI_Status * status /* OUT */

);

Description
MPI_File_write_ordered_end completes a split-collective write initiated by

MPI_File_write_ordered_begin.

The amount of data actually written is returned to each process in status.

Parameters
fh File handle.

buf User’s memory buffer where data should be read.

status Returned MPI_Status object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG buf or status argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NO_SPACE Insufficient free space on the HPSS file system to create, write,

or preallocate a file.

MPI_ERR_NOT_SAME No matching begin operation for this fh.

MPI_ERR_TOO_FRAGMENTED Write operation resulted in excessive file fragmentation.

MPI_ERR_WRITE_CONVERSION Error in user-defined write conversion function.

See Also
MPI_File_write_ordered_begin.

Notes

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-89
Release 4.2, Revision 1

Collective; nonsynchronizing.

Chapter 6. MPI-IO API Functions

6-90 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.3. File Interoperability

File interoperability is the ability to read the information previously written to a file. For homogeneous

environments, applications achieve interoperability by using the host’s native data representation in files.

For heterogeneous environments, applications must agree on a data representation for files that will allow

file sharing.

MPI-IO extends file interoperability by allowing applications to associate a user-defined data representa-

tion or any of three predefined data representations with an open file, to be used when reading or writing

the file. Note that the data representation is a property of an open file; it is not stored in the file. The appli-

cation specifies a data representation as an argument to MPI_File_set_view.

The three predefined data representations supported are:

“native” This file representation is the same as that used in memory, so no conversions are needed.

This is the default data representation used.

“internal” This file representation is currently the same as “native” for this implementation.

“external32” This file representation converts all native/internal data to a canonical representation for

each MPI predefined type. In this representation, all floating point values are big-endian

IEEE format; all integral values are two’s complement big-endian format; and all data is

byte-aligned, regardless of type. The byte sizes of data in this representation are:

MPI_PACKED 1

MPI_BYTE 1

MPI_CHAR 1

MPI_UNSIGNED_CHAR 1

MPI_SIGNED_CHAR 1

MPI_WCHAR 2

MPI_SHORT 2

MPI_UNSIGNED_SHORT 2

MPI_INT 4

MPI_UNSIGNED 4

MPI_LONG 4

MPI_UNSIGNED_LONG 4

MPI_FLOAT 4

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

User-defined data representations and external32 data representations require extra buffering of the data

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-91
Release 4.2, Revision 1

being transferred to and from a file, which will impact performance of the system.

User-defined data representations require that the user provide conversion and extent callback functions

so that MPI-IO can perform the necessary conversions when reading and writing the file.

MPI_Register_datarep is used to associate the callback functions with a data representation identifier.

The conversion callback functions have the following syntactic specification:

typedef int
MPI_Datarep_conversion_function(

void * userbuf,
MPI_Datatype datatype ,
int count,
void * filebuf,
MPI_Offset position,
void * extra_state

);

MPI-IO will automatically invoke the associated conversion functions for read and write operations on a

file with a user-defined data representation. Each callback function must convert between file data repre-

sentation and native data representation. MPI-IO allocates space for a filebuf, and invokes the appropriate

callback to fill or empty the filebuf as many times as necessary to complete the read or write, transferring

data to or from the userbuf. Each callback routine must be able to convert count data items (predefined MPI

types) starting at the data item at position in the datatype. If the size of datatype is less than the size of the

count data items, the conversion function must treat datatype as being contiguously tiled over the userbuf.
The extra_state argument can be used to maintain state information between invocations of the callback

routines.

If an application defines and uses its own data representation, it must also take care in constructing etypes

and filetypes for portability and scalability. MPI-IO will use the extent callback function for predefined

types in order to scale all portable etypes and filetypes; nonportable etypes and filetypes are not scaled.

The application may use MPI_File_get_type_extent in calculating file offsets, such as for seeks. The extent

callback function has the following syntactic specification:

typedef int
MPI_Datarep_extent_function(

MPI_Datatype datatype,
MPI_Aint * file_extent,
void * extra_state

);

The extent callback function returns in file_extent the number of bytes needed to store datatype in the file.

The extra_state argument can be used to maintain state information between invocations of the callback

routines. MPI-IO will only invoke this callback function for predefined datatypes employed by the user.

Chapter 6. MPI-IO API Functions

6-92 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.3.1. MPI_File_get_type_extent

Purpose
Get the extent of a datatype in the data representation mode specified for a file.

Synopsis
#include <mpio.h>

int
MPI_File_get_type_extent(

MPI_File fh, /* IN */

MPI_Datatype datatype, /* IN */

MPI_Aint * extent /* OUT */

);

Description
MPI_File_get_type_extent returns in extent the extent of datatype in the data representation of the

current file view for the file fh.

Parameters
fh File handle.

datatype MPI datatype for which to determine extent.

extent Returned extent.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG extent argument is NULL or datatype argument is

MPI_DATATYPE_NULL.

MPI_ERR_EXTENT_CONVERSION

Error in user-defined extent function.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_set_view, MPI_Register_datarep.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-93
Release 4.2, Revision 1

6.1.3.2. MPI_Register_datarep

Purpose
Register a data representation identifer.

Synopsis
#include <mpio.h>

int
MPI_Register_datarep(

char * datarep, /* IN */

MPI_Datarep_conversion_function * read_conversion_fn, /* IN */

MPI_Datarep_conversion_function * write_conversion_fn, /* IN */

MPI_Datarep_extent_function * dtype_file_extent_fn, /* IN */

void * extra_state /* IN */

);

Description
MPI_Register_datarep associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument to

MPI_File_set_view. This is a local operation and only registers datarep for the calling MPI process.

The length of a data representation string is limited to the value MPI_MAX_DATAREP_STRING.

Parameters
datarep String literal to be used to identify the data representation.

read_conversion_fn Callback function to convert data read from a file to the native

representation.

write_conversion_fn Callback function to convert data written to a file from the

native representation.

dtype_file_extent_fn Callback function to determine the extent of a predefined

type in datarep.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG Invalid datarep argument.

MPI_ERR_DUP_DATAREP datarep duplicates a registered or predefined data representa-

tion identifier.

MPI_ERR_ENOMEM Unable to allocate program space.

See Also
MPI_File_set_view, MPI_File_get_type_extent.

Notes

Chapter 6. MPI-IO API Functions

6-94 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-95
Release 4.2, Revision 1

6.1.4. File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. MPI-2 describes three levels

of consistency: sequential consistency among all accesses using a single file handle; sequential consistency

among all accesses using file handles created from a single collective open with atomic mode enabled, and

user-imposed consistency among accesses other than the above. Sequential consistency means the behav-

ior of a set of operations will be as if the operations were performed in some serial order consistent with

program order; each access appears atomic, although the exact ordering of accesses is unspecified. User-

imposed consistency may be enforced using program order, calls to MPI_File_sync, and file atomicity

modes.

In MPI-IO, HPSS semantics guarantee atomic sequential consistency for accesses using a single file handle

and for accesses using the file handles created from a single collective open, regardless of whether or not

atomic mode is enabled. When using file handles created with multiple opens of the same file, the applica-

tion must impose its own consistency strategies.

Furthermore, for data transfers where the file view dictates that the transfer will be fragmented over the

file (i.e., where there will be holes in the file between data that is accessed), HPSS constraints may require

breaking a single logical transfer into multiple physical transfers. That is, HPSS imposes a limit on the

number of chunks allowed per transfer; if this limit is exceeded, MPI-IO will divide the transfer into

smaller transfers. In this case, the use of atomic mode is recommended to guarantee sequential consis-

tency as required.

Chapter 6. MPI-IO API Functions

6-96 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.4.1. MPI_File_set_atomicity

Purpose
Set the atomicity mode for data access operations on an open file.

Synopsis
#include <mpio.h>

int
MPI_File_set_atomicity(

MPI_Filef h, /* IN/OUT */

int flag /* IN */

);

Description
MPI_File_set_atomicity sets the atomicity mode for the file fh as specified in flag. All participating

processes must specify the same value for flag. If flag is true, atomic mode is set; if flag is false, nona-

tomic mode is set.

Parameters
fh File handle.

flag Specifies how the system should handle overlapping write

requests from different processes. Possible values are:

true (nonzero) and false (zero).

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME flag arguments do not match across processes.

See Also
MPI_File_get_atomicity.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-97
Release 4.2, Revision 1

6.1.4.2. MPI_File_get_atomicity

Purpose
Get the current atomicity mode for data accesses on a file.

Synopsis
#include <mpio.h>

int
MPI_File_get_atomicity(

MPI_File fh, /* IN */

int * flag /* OUT */

);

Description
MPI_File_get_atomicity returns the atomicity mode setting for the file designated by fh.

Parameters
fh File handle.

flag Returned atomicity mode.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG flag argument is NULL.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_set_atomicity.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-98 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.4.3. MPI_File_sync

Purpose
Synchronize pending data accesses to a file.

Synopsis
#include <mpio.h>

int
MPI_File_sync(

MPI_File fh /* IN/OUT */

);

Description
MPI_File_sync causes all previous writes to fh by the calling process to be transferred to the storage

device. This may be necessary to ensure sequential consistency in certain cases.

For this implementation, MPI_File_sync is equivalent to an MPI_Barrier for the group of processes

that participated in a file open. HPSS semantics guarantee that writes are always transferred to the

storage device.

It is erroneous to call MPI_File_sync while uncompleted nonblocking or split collective calls are

pending for fh.

Parameters
fh File handle to synchronize.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_FILE Invalid file handle.

MPI_ERR_PENDING_RW There are uncompleted read or write operations pending for

fh.

See Also
None.

Notes
Collective; synchronizing.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-99
Release 4.2, Revision 1

6.1.5. Error Handling

By default in MPI all communication errors are fatal. I/O errors are usually less catastrophic, so MPI-2

provides additional error facilities for I/O.

Like communicators, each file handle has an error handler associated with it. The predefined error han-

dler for all file handles is MPI_ERRORS_RETURN. An application may override this by defining its own

error handler using MPI_File_create_errhandler and MPI_File_set_errhandler.

For those APIs for which no file handle is associated (e.g., MPI_File_delete or MPI_File_open before a file

handle has been successfully assigned), there is a default file error handler. This default file error handler

is initially MPI_ERRORS_RETURN. The default error handler may be changed by invoking

MPI_File_set_errhandler with MPI_FILE_NULL as the file handle argument.

The MPI-2 standard defines I/O error classes, and implementation-specific error codes may be added by an

MPI implementation. MPI_Error_class translates error codes into classes so that programs can handle

errors portably while allowing them to use implementation-specific information about the error where

available. MPI_Error_string can be used to translate an error code into an error message.

MPI-2 adds the following error classes to MPI:

MPI_ERR_FILE Invalid file handle.

MPI_ERR_NOT_SAME Collective argument not the same on all processes, or collec-

tive routine called in a different order by different processes.

MPI_ERR_AMODE Error related to the amode passed to MPI_File_open.

MPI_ERR_UNSUPPORTED_DATAREP

Unsupported datarep passed to MPI_File_set_view.

MPI_ERR_UNSUPPORTED_OPERATION

Unsupported operation, such as seeking on a file which

supports sequential access only.

MPI_ERR_NO_SUCH_FILE File does not exist.

MPI_ERR_FILE_EXISTS File exists.

MPI_ERR_BAD_FILE Invalid file name.

MPI_ERR_ACCESS Permission denied.

MPI_ERR_NO_SPACE Not enough space.

MPI_ERR_QUOTA Quota exceeded.

MPI_ERR_READ_ONLY Read-only file or file system.

MPI_ERR_FILE_IN_USE File operation could not be completed, as the file is currently

being used by another process.

Chapter 6. MPI-IO API Functions

6-100 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_ERR_DUP_DATAREP Conversion functions could not be registered because a data

representation identifier that was already defined was passed

to MPI_Register_datarep.

MPI_ERR_CONVERSION An error occurred in a user-supplied data conversion

function.

MPI_ERR_IO Other I/O error.

MPI_ERR_INFO_KEY Invalid key length.

MPI_ERR_INFO_VALUE Invalid value length.

MPI_ERR_INFO_NOKEY Key not defined.

This MPI-IO implementation adds the following error codes to MPI:

MPI_ERR_EPERM Invalid credentials for user.

MPI_ERR_ENOMEM Could not allocate core space.

MPI_ERR_ENOTDIR Pathname element is not a directory.

MPI_ERR_EISDIR Filename is a directory.

MPI_ERR_ENFILE Too many open files in system.

MPI_ERR_EMFILE File table overflow.

MPI_ERR_ETIMEDOUT Operation timed out.

MPI_ERR_ENOCONNECT Unable to connect to file system.

MPI_ERR_DISPLACEMENT Invalid displacement.

MPI_ERR_OFFSET Invalid offset.

MPI_ERR_WHENCE Invalid seek whence argument.

MPI_ERR_HINTS Invalid hints.

MPI_ERR_FILETYPE Invalid filetype.

MPI_ERR_ETYPE Invalid etype.

MPI_ERR_BUFTYPE Invalid datatype for user buffer.

MPI_ERR_MEMBER Client process not in file communicator.

MPI_ERR_EXPECTED_OPEN Expected open operation.

MPI_ERR_EXPECTED_CLOSE Expected close operation.

MPI_ERR_EXPECTED_SIZE Expected set_size operation.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-101
Release 4.2, Revision 1

MPI_ERR_EXPECTED_VIEW Expected set_view operation.

MPI_ERR_EXPECTED_SEEK Expected seek_shared operation.

MPI_ERR_EXPECTED_ATOMICITY

Expected set_atomicity operation.

MPI_ERR_EXPECTED_SYNC Expected sync operation.

MPI_ERR_DUP_CLIENT Duplicate client in collective operation.

MPI_ERR_PENDING_RW Pending RW operation on file.

MPI_ERR_NOT_SAME_VIEW Shared file pointer requires same view.

MPI_ERR_TOO_FRAGMENTED File is too fragmented.

MPI_ERR_EXTENT_CONVERSION

Error in datarep extent function.

MPI_ERR_READ_CONVERSION

Error in datarep read conversion.

MPI_ERR_WRITE_CONVERSION Error in datarep write conversion.

MPI_ERR_NOT_INITIALIZED MPI-IO is not initialized.

MPI_ERR_ALREADY_INITIALIZED

MPI-IO is already initialized.

Each error returned by an MPI-IO API falls into a specific class and may be further distinguished by an

error code distinct from its MPI error class. MPI-IO returns errors in the MPI-2 error I/O classes as well as

in the MPI-1 error classes MPI_ERR_ARG, MPI_ERR_TYPE, MPI_ERR_COUNT, and MPI_ERR_RANK.

Nonblocking APIs (including initiating split-collective APIs) can return errors in two ways: some errors

can be detected early and are returned directly as the return value of the API. In this case, no request

object (MPI_REQUEST_NULL) is returned and the program should not call MPI_Test or MPI_Wait (or the

completing split-collective API). Other errors are not detected until after the nonblocking API has

returned. In this case, the completing function (e.g., MPI_Wait) will return a value of

MPI_ERR_IN_STATUS, and the error will be reported in the MPI_Status object that is returned.

Chapter 6. MPI-IO API Functions

6-102 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.5.1. MPI_File_create_errhandler

Purpose
Create an error handler to associate with a file.

Synopsis
#include <mpio.h>

int
MPI_File_create_errhandler(

MPI_File_errhandler_fn * function, /* IN */

MPI_Errhandler * errhandler /* OUT */

);

Description
MPI_File_create_errhandler creates a file error handler object from a function having the

following type signature:

typedef void
MPI_File_errhandler_fn(

MPI_File *,
int *,
...

);

Parameters
function User-defined error handling function.

errhandler Returned error handler

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG function or errhandler argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

See Also
MPI_File_set_errhandler.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-103
Release 4.2, Revision 1

6.1.5.2. MPI_File_set_errhandler

Purpose
Set the error handler associated with a file.

Synopsis
#include <mpio.h>

int
MPI_File_set_errhandler(

MPI_File fh, /* IN/OUT */

MPI_Errhandler errhandler /* IN */

);

Description
MPI_File_set_errhandler associates a new error handler with a file. The error handler must be

either a predefined error handler, or a handler created by a call to MPI_File_create_errhandler. If

the file is MPI_FILE_NULL, the default file error handler is assigned to be errhandler.

Parameters
fh File handle.

errhandler File error handler to associate with fh.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG Invalid errhandler argument.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_create_errhandler, MPI_File_get_errhandler.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-104 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.5.3. MPI_File_get_errhandler

Purpose
Get the error handler associated with a file.

Synopsis
#include <mpio.h>

int
MPI_File_get_errhandler(

MPI_File fh, /* IN */

MPI_Errhandler * errhandler /* OUT */

);

Description
MPI_File_get_errhandler returns the error handler currently associated with a file. If the file

handle is MPI_FILE_NULL, the current default file error handler is returned.

Parameters
fh File handle.

errhandler Returned error handler.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG errhandler argument is NULL.

MPI_ERR_FILE Invalid file handle.

See Also
MPI_File_set_errhandler.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-105
Release 4.2, Revision 1

6.1.5.4. MPI_File_call_errhandler

Purpose
Invokes the error handler associated with a file.

Synopsis
#include <mpio.h>

int
MPI_File_call_errhandler(

MPI_File fh, /* IN */

int errorcode /* IN */

);

Description
MPI_File_call_errhandler invokes the error handler currently associated with the file designated

by fh with the errorcode supplied. If fh is MPI_FILE_NULL or errorcode is MPI_ERR_FILE, the

default file error handler is invoked.

Parameters
fh File handle.

errorcode Error code to send to error handler.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, the return value

depends on the error handler invoked, which may not return at all.

Error Conditions
MPI_ERR_ARG fh is invalid.

See Also
MPI_File_set_errhandler.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-106 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6. File Hints

MPI-2 provides a mechanism to supply hints to an implementation at file open time for the purpose of

communicating known or desired characteristics of the file, such as access style, file permissions, and

striping parameters. These hints are given to the open command in the form of an opaque MPI data object

of type MPI_Info. This object contains some number of (key, value) pairs where key and value are both

strings.

There are several keys reserved by the MPI-2 standard for use as file hints. An implementation in not

required to support all the reserved keys, and it is allowed to add others. The following keys are currently

supported in MPI-IO:

“access_style” Specifies the manner in which a file will be accessed until the file is closed.

The value is one of the following: “read_once”, “write_once”,

“read_mostly”, “write_mostly”, “sequential”, “reverse_sequential”,

“random”, or “collective_only”. Currently, only “collective_only” is used

to optimize accesses. All processes must specify the same value for this key.

“cache_buffer_space” Specifies the total space to use per file per participating process for file

caching. If caching is enabled for a file, this amount of cache space will be

allocated and divided into as many cache slices as possible, where each

slice is the natural size of contiguously accessible data for each process’

view of the file. The value string must contain a positive integer, and must

be greater than or equal to 4096, the smallest cache space allowed.

“conversion_buffer_size” Specifies the size of the buffer to use for translating between an internal

representation to a noninternal data representation in a file. The value

string must contain a positive integer. All processes must specify the same

value for this key.

“filename” Specifies the file name used when a file was opened. This key is only

supported in MPI_File_get_info.

“file_perm” Specifies the file permissions to use for file creation, which is only useful

when passed to MPI_File_open with an amode of MPI_MODE_CREATE.

The value must contain a valid HPSS permission specification for the Mode

argument to hpss_Chmod (e.g., “0744”). All processes must specify the

same value for this key.

“nb_proc” Specifies the number of parallel processes that will typically be assigned to

run programs that access the file. The value string contains a positive

integer. All processes must specify the same value for this key.

“striping_factor” Specifies the number of I/O devices across which the file should be striped.

The value string contains a positive integer. All processes must specify the

same value for this key.

“striping_unit” Specifies the suggested striping unit to be used for this file, in bytes. The

value string must contain an integer greater than or equal to 1. The HPSS

class of service closest to the requested level of striping will be used. All

processes must specify the same value for this key.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-107
Release 4.2, Revision 1

“hpss_cos” Specifies the suggested HPSS COS to be used for this file. The value string

must contain a valid class of service identifier (a positive integer) for the

HPSS host environment. All processes must specify the same value for this

key.

“hpss_sclasstype” Specifies the suggested HPSS type of storage class to be used for this file.

The value string must be either “TAPE” or “DISK”. All processes must

specify the same value for this key.

“hpss_max_file_size” Specifies the maximum file size anticipated for the file. The value string

must contain a positive integer. All processes must specify the same value

for this key.

“hpss_min_file_size” Specifies the minimum file size anticipated for the file. The value string

must contain a positive integer. All processes must specify the same value

for this key.

“hpss_access_size” Specifies the anticipated access size for the file, per processor. The value

string must contain a positive integer. All processes must specify the same

value for this key.

Each open file has an associated set of hints, which can be represented in an MPI_Info object whose

(key,value) pairs indicate the hints given to the open command that were honored by the open. The hints

may be retrieved using MPI_File_get_info. The hints that this implementation currently supports are

only useful at the time the file is opened. Hence, the hints arguments to MPI_File_set_view,

MPI_File_set_info and MPI_File_delete are currently ignored.

MPI-IO hints are translated to HPSS hints at open and set view time. Unlike HPSS, MPI-IO does not

assign priorities to hints, so all hints given through the MPI-IO interface have equal priority.

Applications can use MPI_Info_create and MPI_Info_set to construct the file hints to provide to

MPI_File_open. Applications can use MPI_Info_get to retrieve hints from the MPI_Info object returned

by MPI_File_get_info. MPI_Info_free may be used to free the MPI_Info objects returned by

MPI_File_get_info or MPI_Info_create.

Chapter 6. MPI-IO API Functions

6-108 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.1. MPI_Info_create

Purpose
Create an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_create(

MPI_Info * info /* OUT */

);

Description
MPI_Info_create creates a new MPI_Info object. The newly created object contains no key/value

pairs.

Parameters
info Returned created info object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG info argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

See Also
MPI_Info_free, MPI_Info_set, MPI_Info_get.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-109
Release 4.2, Revision 1

6.1.6.2. MPI_Info_set

Purpose
Add a key/value pair to an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_set(

MPI_Info info, /* IN/OUT */

char * key, /* IN */

char * value /* IN */

);

Description
MPI_Info_set adds the (key, value) pair to info, or overrides the previous value paired with key, if

key is already defined in info.

Parameters
info MPI_Info object to update.

key Key to add or update.

value Value for the associated key.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG info is MPI_INFO_NULL, or key or value is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

MPI_ERR_INFO_KEY key length exceeds MPI_MAX_INFO_KEY.

MPI_ERR_INFO_VALUE value length exceeds MPI_MAX_INFO_VALUE.

See Also
MPI_Info_create, MPI_Info_delete, MPI_Info_get.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-110 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.3. MPI_Info_delete

Purpose
Delete a key/value pair from an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_delete(

MPI_Info info, /* IN/OUT */

char * key /* IN */

);

Description
MPI_Info_delete deletes the key/value pair matching key from info.

Parameters
info MPI_Info object to update.

key Key to delete.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG key argument is NULL or info argument is MPI_INFO_NULL.

MPI_ERR_INFO_KEY key length exceeds MPI_MAX_INFO_KEY.

MPI_ERR_INFO_NOKEY key is not defined in info.

See Also
MPI_Info_set, MPI_Info_get.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-111
Release 4.2, Revision 1

6.1.6.4. MPI_Info_get

Purpose
Retrieve the value of a key/value pair from an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_get(

MPI_Info info, /* IN */

char * key, /* IN */

int valuelen, /* IN */

char * value, /* OUT */

int * flag /* OUT */

);

Description
MPI_Info_get retrieves the value associated with key from the given info. If key is defined in info,

it sets flag to true and returns the value in value. Otherwise, it sets flag to false and leaves value
unchanged. valuelen is the number of characters available in value. If valuelen is less than the string

length of the value, the returned value is truncated.

Parameters
info MPI_Info object to examine.

key Key to retrieve.

valuelen Maximum number of characters available in value.

value Returned value associated with key.

flag Indicator of whether or not key is defined in info.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG key, value or flag argument is NULL or info argument is

MPI_INFO_NULL.

MPI_ERR_INFO_KEY key length exceeds MPI_MAX_INFO_KEY.]

See Also
MPI_Info_set, MPI_Info_delete, MPI_Info_get_valuelen.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-112 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.5. MPI_Info_get_valuelen

Purpose
Get the length of the value of a key/value pair in an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_get_valuelen(

MPI_Info info, /* IN */

char * key, /* IN */

int * valuelen, /* OUT */

int * flag /* OUT */

);

Description
MPI_Info_get_valuelen retrieves the length of the value associated with key from info. If key is

defined in info, valuelen is set to the length of its associated value and flag is set to true. If key is not

defined in info, valuelen is unchanged and flag is set to false.

Parameters
info MPI_Info object to examine.

key Key to retrieve.

valuelen Returned length of the associated value for key.

flag Returned indicator of whether key was defined in info.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG key, valuelen, or flag argument is NULL or info argument is

MPI_INFO_NULL.

MPI_ERR_INFO_KEY key length exceeds MPI_MAX_INFO_KEY.

See Also
MPI_Info_free, MPI_Info_set, MPI_Info_get.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-113
Release 4.2, Revision 1

6.1.6.6. MPI_Info_get_nkeys

Purpose
Get the number of keys defined in an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_get_nkeys(

MPI_Info info, /* IN */

int * nkeys /* OUT */

);

Description
MPI_Info_get_nkeys returns in nkeys the number of keys currently defined in info.

Parameters
info MPI_Info object to examine.

nkeys Returned number of keys.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG nkeys argument is NULL or info argument is

MPI_INFO_NULL.

See Also
MPI_Info_get, MPI_Info_get_valuelen, MPI_Info_get_nthkey.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-114 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.7. MPI_Info_get_nthkey

Purpose
Get the nth key defined in an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_get_nthkey(

MPI_Info info, /* IN */

int n, /* IN */

char * key /* OUT */

);

Description
MPI_Info_get_nthkey returns the nth key in info. Keys are numbered 0..N-1 where N is the value

returned by MPI_Info_get_nkeys. All keys between 0 and N-1 are guaranteed to be defined. The

number of a given key does not change as long as info is not modified with MPI_Info_set or

MPI_Info_delete.

Parameters
info MPI_Info object to examine.

n Index of key to retrieve.

key Returned key.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG info is MPI_INFO_NULL or key is NULL.

MPI_ERR_INFO_NOKEY n is invalid index for info.

See Also
MPI_Info_get_nkeys, MPI_Info_get_key.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-115
Release 4.2, Revision 1

6.1.6.8. MPI_Info_dup

Purpose
Duplicate an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_dup(

MPI_Info info, /* IN */

MPI_Info * newinfo /* OUT */

);

Description
MPI_Info_dup duplicates an existing MPI_Info object, creating a new object with the same

(key,value) pairs and the same ordering of keys.

Parameters
info MPI_Info object to duplicate.

newinfo Returned duplicate of info object.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG newinfo argument is NULL.

MPI_ERR_ENOMEM Unable to allocate program space.

See Also
MPI_Info_free, MPI_Info_create.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

6-116 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.1.6.9. MPI_Info_free

Purpose
Free an MPI_Info object.

Synopsis
#include <mpio.h>

int
MPI_Info_free(

MPI_Info * info /* IN/OUT */

);

Description
MPI_Info_free frees an MPI_Info object created by MPI_Info_create or MPI_Info_dup, and sets

the info object to MPI_INFO_NULL.

Parameters
info MPI_Info object to free.

Return Values
On successful completion the function returns MPI_SUCCESS. Otherwise, it returns one of the

error codes listed below.

Error Conditions
MPI_ERR_ARG info argument is NULL.

See Also
MPI_Info_create, MPI_Info_dup.

Notes
Noncollective.

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-117
Release 4.2, Revision 1

6.2. C++ Language Bindings

This section describes the HPSS MPI-IO application programming interfaces for C++. These APIs are

essentially wrappers that map the C++ calls into calls to the corresponding C APIs.

The C++ bindings differ from the C APIs in that these APIs are declared within the scope of a C++

namespace and are methods defined on C++ objects. If errors are detected in C++, an exception is raised

instead of returning an error code, so the MPI-IO wrappers provide checks on the return values from the C

functions, and raise an exception if MPI_SUCCESS is not returned. The mapping from C++ to C also has

to take into account the differences in C++ and C MPI objects, which is all done automatically for the

application.

C++ applications must be compiled with #include <mpio.h>. Furthermore, the inclusion of <mpio.h>
must precede the inclusion of the host <mpi.h> file, to avoid naming conflicts with the host MPI’s C++

APIs. The C++ compiler must support namespaces.

It is also possible for C++ applications to invoke the MPI-IO C functions directly, as well as the host MPI C

functions. In this case, the application writer must provide the C++-2-C mappings needed. This is useful

in the event the host MPI does not provide the C++ MPI namespace and other supporting MPI functions

since the HPSS MPI-IO only provides C++ bindings for the subset of MPI methods that are defined or

needed for MPI-IO.

The descriptions below provide only the language bindings for each API, to illustrate the difference in syn-

tax and parameter declarations for the C++ APIs. Please refer to the corresponding C API in 6.1. for the

complete functionality specification for each API.

Chapter 6. MPI-IO API Functions

6-118 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Synopsis
#include <mpio.h>

void MPI::File::Call_errhandler(
int errorcode) const

void MPI::File::Close()

static MPI::Errhandler MPI::File::Create_errhandler(
MPI::File::Errhandler_fn * function)

static void MPI::File::Delete(
const char * filename,
const MPI::Info& info)

static MPI::File MPI::File::Open(
const MPI::Intracomm& comm,
const char * filename,
int amode,
const MPI::Info& info)

int MPI::File::Get_amode() const

int MPI::File::Get_atomicity() const

MPI::Offset MPI::File::Get_byte_offset(
const MPI::Offset disp)

MPI::Errhandler MPI::File::Get_errhandler() const

MPI::Group MPI::File::Get_group() const

MPI::Info MPI::File::Get_info() const

MPI::Offset MPI::File::Get_position() const

MPI::Offset MPI::File::Get_position_shared() const

MPI::Offset MPI::File::Get_size() const

MPI::Aint MPI::File::Get_type_extent(
const MPI::Datatype& datatype) const

void MPI::File::Get_view(
MPI::Offset& disp,
MPI::Datatype& etype,
MPI::Datatype& filetype,
char * datarep)

MPI::Request MPI::File::Iread(
void * buf,
int count,
const MPI::Datatype& datatype)

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-119
Release 4.2, Revision 1

MPI::Request MPI::File::Iread_at(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

MPI::Request MPI::File::Iread_shared(
void * buf,
int count,
const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite(
void * buf,
int count,
const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite_at(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite_shared(
void * buf,
int count,
const MPI::Datatype& datatype)

static MPI::File MPI::File::Open(
const MPI::Intracomm&comm,
const char * filename,
int amode,
const MPI::Info& info)

void MPI::File::Preallocate(
MPI::Offset size)

void MPI::File::Read(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Read_all(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_all(
void * buf,

Chapter 6. MPI-IO API Functions

6-120 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Read_all_begin(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_all_end(
void * buf)

void MPI::File::Read_all_end(
void * buf,
MPI::Status& status)

void MPI::File::Read_at(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_at(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Read_at_all(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_at_all(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Read_at_all_begin(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_at_all_end(
void * buf)

void MPI::File::Read_at_all_end(
void * buf,
MPI::Status& status)

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-121
Release 4.2, Revision 1

void MPI::File::Read_ordered(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_ordered(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Read_ordered_begin(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_ordered_end(
void * buf)

void MPI::File::Read_ordered_end(
void * buf,
MPI::Status& status)

void MPI::File::Read_shared(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Read_shared(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Seek(
MPI::Offset offset,
int whence)

void MPI::File::Seek_shared(
MPI::Offset offset,
int whence)

void MPI::File::Set_atomicity(
bool flag)

void MPI::File::Set_errhandler(
const MPI::Errhandler& errhandler)

void MPI::File::Set_info(
const MPI::Info& info)

void MPI::File::Set_size(
MPI::Offset size)

Chapter 6. MPI-IO API Functions

6-122 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

void MPI::File::Set_view(
MPI::Offset disp,
const MPI::Datatype& etype,
const MPI::Datatype& filetype,
const char * datarep,
const MPI::Info& info)

void MPI::File::Sync()

void MPI::File::Write(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Write_all(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_all(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Write_all_begin(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_all_end(
void * buf)

void MPI::File::Write_all_end(
void * buf,
MPI::Status& status)

void MPI::File::Write_at(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_at(
MPI::Offset offset,
void * buf,
int count,

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-123
Release 4.2, Revision 1

const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Write_at_all(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_at_all(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Write_at_all_begin(
MPI::Offset offset,
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_at_all_end(
void * buf)

void MPI::File::Write_at_all_end(
void * buf,
MPI::Status& status)

void MPI::File::Write_ordered(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_ordered(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

void MPI::File::Write_ordered_begin(
void * buf,
int count,
const MPI::Datatype& datatype)

void MPI::File::Write_ordered_end(
void * buf)

void MPI::File::Write_ordered_end(
void * buf,
MPI::Status& status)

void MPI::File::Writed_shared(
void * buf,

Chapter 6. MPI-IO API Functions

6-124 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

int count,
const MPI::Datatype& datatype)

void MPI::File::Write_shared(
void * buf,
int count,
const MPI::Datatype& datatype,
MPI::Status& status)

static MPI::Info MPI::Info::Create()

void MPI::Info::Delete(
const char * key)

MPI::Info MPI::Info::Dup() const

void MPI::Free()

bool MPI::Info::Get(
const char * key,
int valuelen,
char * value) const

int MPI::Info::Get_nkeys() const

void MPI::Info::Get_nthkey(
int n,
char * key) const

bool MPI::Info::Get_valuelen(
const char * key,
int& valuelen) const

void MPI::Info::Set(
const char * key,
const char * value)

void MPI::Register_datarep(
const char * datarep,
MPI::Datarep_conversion_function * read_conversion_fn,
MPI::Datarep_conversion_function* write_conversion_fn,
MPI::Datarep_extent_function * dtype_file_extent_fn,
void * extra_state)

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-125
Release 4.2, Revision 1

6.3. Fortran Language Bindings

This section describes the HPSS MPI-IO application programming interfaces for Fortran77. All of the For-

tran APIs are essentially wrappers that translate the Fortran arguments into appropriate C arguments,

invoke the C APIs, and translate the C results into the appropriate Fortran outputs. The Fortran interfaces

differ from C in that error return values are assigned to the output parameter IERROR; that is, these inter-

faces are subroutines instead of functions. Other differences between Fortran and C are that address-sized

values (such as offsets, displacements, etc.) are INTEGER-sized. This means that in Fortran, MPI_Aint is a

32-bit quantity, but in C, it is generally a 64-bit quantity, for most host MPIs. Another difference is that

handles of opaque objects are INTEGERs in Fortran. The MPI-2 standard has defined conversion func-

tions for translating Fortran-2-C and C-2-Fortran, which is automatically done for the MPI-IO APIs

defined here.

Applications using the HPSS MPI-IO interfaces must be compiled with #include <mpiof.h>, using a com-

piler that supports C preprocessing directives and KIND-parameterized integers.

The descriptions below provide only the language bindings for each API, to illustrate the difference in

syntax and parameter declarations for the Fortran APIs. Please refer to the corresponding C API in 6.1. for

the complete functionality specification for each API.

Synopsis
#include <mpiof.h>

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
INTEGER FH, ERRORCODE, IERROR

MPI_FILE_CLOSE(FH, IERROR)
INTEGER FH, IERROR

MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)
CHARACTER*(*) FILENAME
INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, FLAG, IERROR

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_ERRHANDLER(FH, ERRHANDLER, IERROR)
INTEGER FH, ERRHANDLER, IERROR

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

Chapter 6. MPI-IO API Functions

6-126 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
INTEGER FH, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
INTEGER FH, ETYPE, FILETYPE, IERROR
CHARACTER*(*) DATAREP
INTEGER (KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
CHARACTER* (*) FILENAME

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-127
Release 4.2, Revision 1

INTEGER COMM, AMODE, INFO, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

Chapter 6. MPI-IO API Functions

6-128 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, FLAG, IERROR

MPI_FILE_SET_ERRHANDLER(FH, ERRHANDLER, IERROR)
INTEGER FH, ERRHANDLER, IERROR

MPI_FILE_SET_INFO(FH, INFO, IERROR)
INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER*(*) DATAREP
INTEGER (KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)
INTEGER FH, IERROR

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-129
Release 4.2, Revision 1

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_INFO_CREATE(INFO, IERROR)
INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)
INTEGER INFO, IERROR
CHARACTER *(*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)
INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
CHARACTER *(*) KEY, VALUE
LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTH_KEY(INFO, N, KEY, IERROR)
INTEGER INFO, N, IERROR
CHARACTER *(*) KEY

Chapter 6. MPI-IO API Functions

6-130 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
CHARACTER *(*) KEY
LOGICAL FLAG

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
INTEGER INFO, IERROR
CHARACTER *(*) KEY, VALUE

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN,
WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN, EXTRA_STATE,
IERROR)

CHARACTER *(*) DATAREP
EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN
EXTERNAL DTYPE_FILE_EXTENT_FN
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER IERROR

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-131
Release 4.2, Revision 1

6.4. Data Definitions

This section describes all externally used data definitions that are provided by MPI-IO. A data definition

may be represented by constructs such as data structures and constants. For each data definition, a

description and a format (including parameter descriptions) are provided.

6.4.1. MPI-IO Standard Data Definitions

The following types are specified in the MPI-2 standard and used by MPI-IO.

Most of the types added by MPI-IO are opaque MPI object types, such as MPI_File, MPI_Info, and

MPI_File_errhandler. To an application, each of these types is accessed only through a handle. The only

MPI-IO data type whose contents are explicitly available to an application is MPI_Offset.

MPI-IO and other MPI-2 constants and defaults are described in 6.1. with the relevant APIs that use them.

Chapter 6. MPI-IO API Functions

6-132 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.4.1.1. MPI_Offset

Description
An MPI_Offset is required to be a signed, 64-bit integral type that may be used in integer arithmetic oper-

ations. MPI-IO assumes the availability of a native 64-bit integral type on platforms supporting MPI-IO/

HPSS. For the platforms MPI-IO currently supports, this is available as type long long.

Format
typedef long long MPI_Offset;

In C++, MPI::Offset is the corresponding type, defined within the MPI namespace.

In Fortran77, the corresponding type is an INTEGER (KIND=MPI_OFFSET_KIND).

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-133
Release 4.2, Revision 1

6.5. Troubleshooting

A number of problems can arise in developing HPSS MPI-IO applications, from compile and load errors to

run time diagnostics. This section attempts to summarize common errors and potential solutions, and to

give hints on how to achieve optimal performance.

6.5.1. Compilation issues

In order to compile for HPSS MPI-IO, applications and libraries must have #include <mpio.h> in their

sources, and must provide the include path -I/opt/hpss/include on the compile line. For C++ compila-

tions, the inclusion of <mpio.h> must precede that of the host <mpi.h>, or there will be naming conflicts.

For Fortran compilations, <mpiof.h> should be used instead of <mpio.h>.

A thread-safe compilation should be specified. For C++, the compiler must support namespaces. For For-

tran, the compiler must support C preprocessing directives.

Note that the host MPI usually provides specific compiler scripts or executables that provide the appropri-

ate include and load paths automatically. Specifically, it is recommended that you use the following host

interfaces with HPSS MPI-IO:

mpcc_r with IBM’s PE MPI

tmcc with Solaris’ HPC MPI

mpicc with MPICH

The following errors can arise during compilation, which need to be resolved as described.

• Missing <mpio.h> or <mpio_MPI_config.h>: the compiler’s preprocessor is unable to locate the

HPSS MPI-IO include directory. Check that -I/opt/hpss/include is being used on the compile line. If it

is included, check with your HPSS sysadmin as MPI-IO was not built for your system.

• Missing <mpi.h>: the compiler’s preprocessor is unable to locate the host MPI include directory.

Check that you are using the host-provided MPI compile interface as described above, and check

where the host MPI that was used to build HPSS MPI-IO is installed. You may need to add -I with the

appropriate path to the host MPI include directory to your compile line.

• Conflicts between <mpi.h> and <mpio.h> definitions (e.g. duplicate or missing definitions are

reported): most likely, this indicates that HPSS MPI-IO was built with a different host MPI than the

one you are attempting to use. Check with your HPSS sysadmin to verify what host MPI was used to

configure HPSS MPI-IO. The sysadmin may need to update HPSS MPI-IO for a newer version of the

host MPI, or rebuild HPSS MPI-IO if the one installed does not match the intended use. If the prob-

lems persist, HPSS MPI-IO may never have been configured for the host MPI you are trying to use,

and the sysadmin will need to request an HPSS configuration update.

• Missing DCE/Encina include files: if the DCE or Encina clients have not been fully installed on your

platform, missing include files will be reported at compile time. Contact your HPSS sysadmin for

assistance in obtaining the needed files.

Chapter 6. MPI-IO API Functions

6-134 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

6.5.2. Load/Link issues

As described in 6.5.1. above, the host-provided MPI interface should be used for loading as well as for

compiling, to guarantee the host MPI and dependent libraries are loaded correctly. Required libraries that

must be loaded for HPSS MPI-IO are described in 1.5.4.

Thread-safe versions of all libraries should be used.

The following load/link errors may occur with HPSS MPI-IO applications.

• Missing libmpioapi.a or libhpss.a: the loader is unable to locate the HPSS library directory. You need

to add -L/opt/hpss (or other -L option, as appropriate) to your load line.

• Missing libmpi.a: the loader is unable to locate the host MPI library. Check that you are using the

host-provided MPI compile/link script, as described in 6.5.1. above. You may need to add -L with the

appropriate path to the host MPI lib directory to your load line.

• Missing libdce.a, libEncina.a, or libEncClient.a: the loader is unable to locate the DCE and Encina

libraries. These may need to be installed for your platform. Contact your HPSS sysadmin for assis-

tance.

6.5.3. Run-time errors

Unlike most MPI applications, the default error handling for MPI-IO applications is set in MPI_Init to
MPI_ERRORS_RETURN. This forces most errors to be returned to the application rather than causing

the application to abort. (There are some internal errors that are nonrecoverable, and if these are detected,

the application will be aborted.) Thus the application developer must check for potential error returns and

provide error recovery in the presence of errors. For example, if an MPI_File_open fails, it is obviously

erroneous to attempt to read or write using the returned file handle.

Error messages that describe the error can be obtained using the MPI_Error_string function, and the envi-

ronmment variables MPIO_DEBUG and HPSS_DEBUG may be set (to any nonzero value) to enable

more diagnostic information being included in stderr messages.

Section 6.1. lists all the errors that may be returned by each MPI-IO API, and section 6.1.5. provides more

information on APIs for error handling.

Errors relating to HPSS may indicate system failures or unavailability which should be reported to your

HPSS sysadmin.

6.5.4. Thread-safety issues

HPSS MPI-IO imposes a multithreaded model on applications which may not otherwise be thread-aware.

Application developers need to be conscious of the multithreading of the HPSS MPI-IO library, and to take

some precautions when using HPSS MPI-IO.

Not all host MPIs provide a thread-safe MPI library. HPSS MPI-IO attempts to circumvent thread race

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-135
Release 4.2, Revision 1

conditons by preventing more than one thread from making MPI calls simultaneously by using a mutex

lock/unlock wrapping around MPI calls. This is successful within the MPI-IO library itself, but if the

application is multithreaded, or if libraries are used that make MPI calls, there is no guarantee that the

resulting mixture will be thread-safe.

The best solution is to use a thread-safe host MPI. If your MPI host is thread-safe, the rest of this section

will probably not apply to you. If not, HPSS MPI-IO may still be viable with your host MPI, but more of a

burden is placed on the application developer to avoid thread-safety errors.

The typical error seen in an application with a lack of thread-safety is that the application deadlocks. This

usually indicates that more than one thread at a time is attempting to make MPI calls in a process. If this

is so, examination of the applications’ threads with the aid of a debugger will indicate one or more threads

waiting to perform a mutex lock, without apparent progress.

Another error that can occur due to multithreading are race conditions that can cause results to differ

across different executions of the same application. Race conditions sometimes uncover programming

errors, such as failing to initialize a variable before use, that are just never seen when running in non-

threaded mode. More often, they just indicate a need for syncronization that was not previously observed.

With HPSS MPI-IO, both of these situations are usually due to a failure to syncronize between the MPI-IO

library and the application. MPI_File_sync, which guarantees that all participating processes are at a sta-

ble and quiescent state of execution with respect to a given file, may be useful for imposing the needed

syncronization. MPI_Barrier, which is typically used for MPI syncronization, may introduce the errors

described above, due to the lack of a thread-safe host MPI. Where possible, MPI_File_sync should be

used instead.

Lastly, a multithreaded application should adhere to the MPI-1 restriction that only one thread is allowed

to make MPI calls, and only one collective call may be active at a time on any given communicator. Fur-

ther, the MPI-2 specification for MPI-IO prohibits concurrent collective activity on a file handle. A failure

to observe these restrictions can also lead to deadlock or other thread-safety errors.

6.5.5. Performance issues

The effect of HPSS and MPI-IO environment variables on the potential performance of applications is dis-

cussed in 1.1.5. and 1.5.5.

Probably the most important performance consideration is matching the pattern of file accesses to the

HPSS file storage class characteristics. The optimal performance should be achieved when the striping

width and length of the HPSS file match the number of participating processes and the filetype extent per

process, respectively. File hints can be used to provide information when the file is opened about how to

select an appropriate HPSS COS (Class of Service) for the file characteristics expected. See 6.1.6. for more

information on how to use these hints. Recall that HPSS performance is best with large files being

accessed in regular (striped) access patterns.

The automatic caching facility can be enabled by opening the file with MPI_MODE_UNIQUE_OPEN.

Caching of data slices from a file is expected to improve small data accesses when the accesses to the file by

Chapter 6. MPI-IO API Functions

6-136 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

each participating process exhibit high locality of reference. Caching issues are discussed in more detail in

6.5.6.

Use of collective data accesses where possible will allow MPI-IO to optimize access to the HPSS file sys-

tem, compared to equivalent noncollective accesses. Collective accesses can also minimize potential frag-

mentation of the HPSS file due to the distribution of the file data across processes. Excessive file

fragmentation can result in HPSS disallowing further writes to a file.

6.5.6. Caching issues

Application developers must be aware of potential hazards and performance issues when enabling the

automatic caching facility by opening files with MPI_MODE_UNIQUE_OPEN. When caching is enabled,

there will be a cache-miss overhead imposed, which essentially is a double buffering penalty. If data

accesses exhibit good locality of reference, the overhead penalty will quickly be ameliorated by perfo-

mance improvement after the cache has been primed.

Caching should not be enabled for data access patterns that do not exhibit locality.

Caching should not be enabled if the same file is concurrently open through any other process not partici-

pating in the file open. Cache and file coherency can only be guaranteed if the unique open mode restric-

tions are observed.

The caching strategy used determines whether or not a file is eligible for cached accessing when the file

view is set. To be eligible, each participating process’ view must be distinct and have no overlapping areas

of the file shared with another process. Note that the default file view used when a file is opened will not

be eligible for cached access, unless the communicator used to open the file has only one participating pro-

cess. The filetypes of all the participating processes are used to determine a natural cache size to use per

process, which usually represents the stripe size of data per process in the file. If this cache size falls

within prescribed min/max limits, a cache space will be allocated for each process for 1 or more cache

buffers of the determined cache size.

Subsequent data accesses of the file will be cached, provided the amount of data being accessed is less than

or equal to the size of a cache buffer and are contained within a single cache buffer (i.e., do not span more

than one cache buffer). A least-recently-used strategy will be used to locate a cache buffer to flush and

reuse, in the event of a cache miss.

The default maximum cache space allocated for a file is 64 MB. The file hint for cache_buffer_space (as

described in 6.1.6) can be used to override the default minimum cache size, which is 4 KB. The default

minimum cache size allowed is 4 KB and the maximum cache size allowed is 16 MB. The number of cache

buffers per file is determined from the max cache space and the cache size: the cache space allocated will

be divided up into as many buffers as possible.

Caching may cause MPI_ERR_ENOMEM errors, if the cache space allocated for files is excessive. If this is

suspected, caching should be disabled, unless the space available to the application can be increased (e.g.,

by increasing user or system limits).

Chapter 6. MPI-IO API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 6-137
Release 4.2, Revision 1

MPI_File_get_size() is a noncollective call and in the presence of caching will only be accurate per process.

In order to guarantee that the correct collective size is obtained, all processes must synchronize by first

invoking MPI_File_sync(), which will flush all cache buffers as needed and guarantee that the written file

size is correct for all processes.

Chapter 6. MPI-IO API Functions

6-138 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-139
Release 4.2, Revision 1

Chapter 7. Site Interfaces

This chapter describes all Site Interfaces which are provided for use by two shared libraries (Account Vali-

dation site policy and Gatekeeping site policy) which will each be dynamically loaded with the Gate-

keeper Server. The Site interface specification includes the following information:

• Name

• Purpose

• Syntax

• Description

• Parameters

• Return Values

• Error Conditions

• Related Information

• Clients

• Notes

• Example Use

7.1. Gatekeeping

This section describes the Gatekeeping Site Interfaces. Function definitions for these Site Interfaces are

provided with the HPSS release, thus the Gatekeeper Server installed by default does NO gatekeeping.

Sites will need to enhance these interfaces to implement local policy rules. (The site interface code exists in

/opt/hpss/src/sitelib/gk.) Each Site Interface will be called by a Gatekeeping Service API. Please refer to

the "Example Use" section of each Site Interface for example "pseudo code" implementation details of a site

defined policy.

Please note that the code listed here is merely to give an idea of example uses. It has not been tested in an

actual system.

Chapter 7. Site Interfaces

7-140 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.1. gk_site_Close

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper when-

ever a file is closed. This function is not an RPC. It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Close (

uuid_t ControlNo); /* IN */

Description
This function is written by the customer site. It will be called by gk_Close while processing a close

of an HPSS file.

Parameters
ControlNo Unique identifier for the opened file which is now being

closed. This number was generated by the Gatekeeper and

passed into gk_site_Open or gk_site_OpenStats.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_Close routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOENT Could not find an entry matching the ControlNo field in

EntryInfo.

HPSS_ENOTREADY Initialization has not completed.

Related Information
See also gk_Close, gk_Open, gk_site_Open, and gk_site_OpenStats.

Clients
Gatekeeper.

Notes
None.

Example Use
Log entrance of this routine to the Site Policy Logfile.

Lock the Request Cache.

Lookup the ControlNo in the Request Cache.

If not found, then

 It must have already been removed.

 NOTE: There is a situation in which this'll happen.

It could be that the GK was bounced while the BFS was handling

 the termination. So, don't do anything rash.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-141
Release 4.2, Revision 1

 Unlock the Request Cache.

 Log an Error to the Site Policy Logfile.

 return.

If the Request was NOT an AuthorizedCaller request, then

 If the State of this request is GOOD, then

 Decrement the Host Count of the good opens pending.

 Decrement the User Count of the good opens pending.

 Decrement the global number of good opens pending.

 Else if the State of this request is RETRY, then

 Decrement the global number of retry opens pending.

 If the Request was in a retry state due to the host policy

 denying the open, then

 Decrement the Host's Count of the retry opens pending.

 If the Request was in a retry state due to the user policy

 denying the open, then

 Decrement the User's Count of the retry opens pending.

Delete the Request from the Request Cache.

Unlock the Request Cache.

Log exit of this routine to the Site Policy Logfile.

Chapter 7. Site Interfaces

7-142 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.2. gk_site_Create

Purpose
This is an internal, site defined-and-implemented function that implements site policies which

decide if a caller is authorized to create the file now, later, or not at all. This function is not an RPC.

It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Create (

gk_EntryInfo_t EntryInfo, /* IN */
unsigned32 *WaitTimeP); /* OUT */

Description
This function is written by the customer site. It is called by gk_Create whenever an HPSS file create

occurs.

Parameters
EntryInfo Information about the file being created.

WaitTimeP A pointer to the number of seconds to wait before retrying a

request.

Return Values
Upon successful completion, a value of zero (0) is returned which tells the Gatekeeper to continue

with the create request. After the Gatekeeper has returned success to the caller, it expects

gk_site_CreateComplete to be called when the file has been created or if an error occurs.

All non-zero return values will be treated as errors, thus the client will do the appropriate error

handling and terminate the create request. Non-zero error values are described in the Error

Conditions.

Error Conditions
The gk_site_Create routine is unsuccessful if any of the following are true:

HPSS_EACCES Permission is denied.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOTREADY Initialization has not completed.

HPSS_EPERM The operation is not permitted.

HPSS_ERETRY The operation should be retried after the delay, in seconds,

returned by the WaitTimeP parameter.

Related Information
See also gk_Create, gk_CreateComplete, gk_site_CreateComplete and gk_site_CreateStats.

Clients
Gatekeeper.

Notes

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-143
Release 4.2, Revision 1

Routine gk_site_CreateStats is called instead of gk_site_Create whenever an HPSS file create

occurs from an authorized caller when authorized caller requests are monitored.

If the operation should be retried, HPSS_RETRY is returned and the number of seconds the caller

should wait before retrying is returned in the WaitTimeP parameter. If the site does not specify the

WaitTimeP parameter (returns 0), the default value from the Gatekeeper’s specific configuration

field DefaultWaitTime is used instead.

Example Use:
Log entrance of this routine to the Site Policy Logfile using the

 RequestId passed in the EntryInfo.

Initialize the WaitTimeP return parameter to 0.

If we're not monitoring for creates, then

 Log an ALARM Error to the Site Policy Logfile.

Return, but don't return an error status -- just let the create con-
tinue.

If there is a no Site Policy file

 Log an Error to the Site Policy Logfile.

 Return good status.

Lock the Request Cache.

Find the Request in the Request Cache.

If not found, then

 Create a new Request Entry and add it to the Request Cache.

Else

 The Request is being retried.

If there exists a "Maximum Number of Creates Per Host Policy", then

 Note: Translating socket address into hostnames is expensive, so

 maintain a cache to translate HostAddrs to HostNames.

 Lock the HostAddrToHostName Cache.

 Lookup the EntryInfo.HostAddr in the HostAddrToHostName Cache.

 If it doesn't exist, then

 gethostbyaddr_h

If Error returned by multithreaded safe get host by addr lookup, then

 Log an error to the Site Policy Logfile.

 Delete the Request from the Request Cache.

 Unlock all locks.

 Return HPSS_EFAULT.

 Create, initialize and add a new HostAddrToHostName cache entry.

 Save away the HostName.

 Unlock the HostAddrToHostName Cache.

 Lookup the HostName in the Host Entry Cache.

 Note: The Host Entry Cache is sharing the Request Cache Lock.

 If not found, then

 Create a new Host Entry and add it to the Host Cache.

Chapter 7. Site Interfaces

7-144 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

If the Host Entry's good creates pending >= Maximum Creates Per Host,

 then

 Mark this request as a RETRY due to host policy denial.

 Set Error to HPSS_ERETRY.

 If the Request was not originally a RETRY, then

 Increment the retry creates pending in the Host Entry.

If there exists a "Maximum Number of Creates Per User Policy" AND Error

wasn't set in the Host Policy code above, then

 Lookup the UserId/DCECellId pair in the User Entry Cache.

 Note: The UserId and DCECellId together will uniquely identify a

 particular user in a federated name space (cross cell)

 environment.

 Note: The User Entry Cache is sharing the Request Cache Lock.

 If not found, then

 Create a new User Entry and add it to the User Cache.

If the User Entry's good creates pending >= Maximum Creates Per User,

 then

 Mark this request as a RETRY due to user policy denial.

 Set Error to HPSS_ERETRY.

 If the Request was not originally a RETRY, then

 Increment the retry creates pending in the User Entry.

If we want to return HPSS_ERETRY, then

If this originally wasn't a retry request (i.e. first delay of request),

 then

 Increment the global retry creates pending count.

 Increment the RetryCount associated with the Request Entry.

 Mark the Request Entry's state as RETRY.

 Compute the WaitTime corresponding to the number of seconds to wait

 before the Client API will retry this request.

Else if no Error, then

 Increment the global good creates pending count.

 Mark the Request Entry's state as GOOD.

 If this request is being retried again, then

 Decrement the global retry creates pending count.

 If Host policy exists, then

 Decrement the Host Entry's good creates pending count.

If this request was previously retried due to host policy denial, then

 Decrement the Host Entry's retry creates pending count.

 If User policy exists, then

 Decrement the User Entry's good creates pending count.

If this request was previously retried due to user policy denial, then

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-145
Release 4.2, Revision 1

 Decrement the Host User's retry creates pending count.

Unlock the Request Cache.

Log exit of this routine to the Site Policy Logfile.

Return the status.

Chapter 7. Site Interfaces

7-146 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.3. gk_site_CreateComplete

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper when a

file create has completed. This function is not an RPC. It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_CreateComplete (

uuid_t ControlNo); /* IN */

Description
This function is written by the customer site. It will be called by gk_CreateComplete while

processing a file create completion of an HPSS file.

Parameters
ControlNo Unique identifier for the created file which is now being

completed. This number was generated by the Gatekeeper

and passed into gk_site_Create or gk_site_CreateStats.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_CreateComplete routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOENT Could not find an entry matching the ControlNo field in

EntryInfo.

HPSS_ENOTREADY Initialization has not completed.

Related Information
See also gk_Create, gk_CreateComplete, gk_site_Create and gk_site_CreateStats.

Clients
Gatekeeper.

Notes
None.

Example Use:
Please see section 7.1.1., gk_site_Close.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-147
Release 4.2, Revision 1

7.1.4. gk_site_CreateStats

Purpose
This is an internal, site defined-and-implemented function that is called asynchronously by the

Gatekeeper when an authorized caller is creating a file. It is only called when authorized caller

requests and create requests are being monitored. This function is not an RPC. It is a call to a proce-

dure in a shared library.

Syntax
void
gk_site_CreateStats (

gk_EntryInfo_t EntryInfo); /* IN */

Description
This function is written by the customer site. It is called asynchronously by gk_Create whenever

an HPSS file create occurs from an authorized caller when both create requests and authorized

caller requests are monitored.

Parameters
EntryInfo Information about the file being created.

Return Values
None.

Error Conditions
None.

Related Information
See also gk_Create, gk_CreateComplete, gk_site_Create and gk_site_CreateComplete.

Clients
Gatekeeper.

Notes
Routine gk_site_CreateStats is called instead of gk_site_Create whenever an HPSS file create

occurs from an authorized caller when authorized caller requests are monitored.

The Gatekeeper will queue all asynchronous calls to the site interfaces so that they are processed

in the order they are received. For example, if a site is monitoring authorized caller, create and

open requests and an authorized caller create request is issued before an authorized caller open

request, then the Gatekeeper will queue these requests so that gk_site_CreateStats is called before

gk_site_OpenStats.

Example Use:
Log entrance of this routine to the Site Policy Logfile using the

 RequestId passed in the EntryInfo.

If we're not monitoring for creates, then

 Log an ALARM Error to the Site Policy Logfile.

 Return.

If there is a no Site Policy file

Chapter 7. Site Interfaces

7-148 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 Log an Error to the Site Policy Logfile.

 Return.

Lock the Request Cache.

Find the Request in the Request Cache.

If not found, then

 Create a new Request Entry and add it to the Request Cache.

If there exists a "Maximum Number of Creates Per Host Policy", then

 Note: Translating socket address into hostnames is expensive, so

 maintain a cache to translate HostAddrs to HostNames.

 Lock the HostAddrToHostName Cache.

 Lookup the EntryInfo.HostAddr in the HostAddrToHostName Cache.

 If it doesn't exist, then

 gethostbyaddr_h

If Error returned by multithreaded safe get host by addr lookup, then

 Log an error to the Site Policy Logfile.

 Delete the Request from the Request Cache.

 Unlock all locks.

 Return.

 Create, initialize and add a new HostAddrToHostName cache entry.

 Save away the HostName.

 Unlock the HostAddrToHostName Cache.

 Lookup the HostName in the Host Entry Cache.

 Note: Assume the Host Entry Cache is sharing the Request Cache Lock.

 If not found, then

 Create a new Host Entry and add it to the Host Cache.

If there exists a "Maximum Number of Creates Per User Policy", then

 Lookup the UserId/DCECellId pair in the User Entry Cache.

 Note: The UserId and DCECellId together will uniquely identify a

 particular user in a federated name space (cross cell)

 environment.

 Note: The User Entry Cache is sharing the Request Cache Lock.

 If not found, then

 Create a new User Entry and add it to the User Cache.

Mark the Request Entry's state as GOOD.

Unlock the Request Cache.

Log exit of this routine to the Site Policy Logfile.

Return.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-149
Release 4.2, Revision 1

7.1.5. gk_site_GetMonitorTypes

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper get the

types of items being monitored. This function is not an RPC. It is a call to a procedure in a shared

library.

Syntax
signed32
gk_site_GetMonitorTypes (

u_signed64 MonitorTypeBitsP); /* OUT */

Description
This interface will lookup the local site policies to determine which request types are being moni-

tored. It will then return a bitvector of items being monitored. The Bitfile Server will call

gk_GetMonitorTypes when (re)connecting to the Gatekeeper to learn which request types are

being monitored so that it can call the Gatekeeper appropriately. The Gatekeeper will call

gk_site_GetMonitorTypes. Currently the following request types can be monitored: authorized

caller, create, open, and stage.

It is important that the Site Interfaces return a status in a timely fashion. Create, open, and stage

requests from DFS, NFS, and MPS (authorized callers) are timing sensitive, thus the Site Interfaces

won’t be permitted to delay or stop these requests, however the Site Interfaces may choose to be

involved in keeping statistics on these requests by monitoring requests from authorized callers.

Parameters
MonitorTypeBitsP A bit vector (0 origin array of bits) in which the appropriate

bit is set (on) for each request type that is currently being

monitored. Request types index are:

GK_MONITOR_AUTHORIZED_CALLER 0

GK_MONITOR_CREATE 2

GK_MONITOR_OPEN 4

GK_MONITOR_STAGE 8

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_GetMonitorTypes routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

Related Information
See also gk_GetMonitorTypes.

Clients
Gatekeeper

Chapter 7. Site Interfaces

7-150 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Notes
The following table describes which Site Interface will be called for each request type when autho-

rized caller requests are monitored.

Example Use:
Log entrance of this routine to the Site Policy Logfile.

Set the bits corresponding to what we're monitoring in the MonitorType-
BitsP.

(e.g. *MonitorTypeBitsP = orbit64m(*MonitorTypeBitsP, GK_MONITOR_OPEN))

Log exit of this routine to the Site Policy Logfile.

Return status.

Request Type Authorized Caller All Other Users

Create gk_site_CreateStats gk_site_Create

Open gk_site_OpenStats gk_site_Open

Stage gk_site_StageStats gk_site_Stage

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-151
Release 4.2, Revision 1

7.1.6. gk_site_Init

Purpose
This is an internal, site defined and implemented function that is called when the Gatekeeper is

(re)initialized. This function is used to do whatever initialization is needed by the site module.

This function is not an RPC. It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Init (

char *SitePolicyPathNameP); /* IN */

Description
This function is written by the customer site. It will be called by the Gatekeeper’s internal initial-

ization routine whenever the Gatekeeper initializes or reinitializes.

Parameters
SitePolicyPathNameP A pointer to the path name of the file where the site policy is

stored.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_Init routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

Related Information
None.

Clients
Gatekeeper.

Notes
If an error value is returned, the Gatekeeper Server will not initialize.

Example Use:
Initialize mutex locks, global variables, etc.

If the passed in SitePolicyPathNameP is non null and not nil, then

 Read the site policy file looking for things like:

- The types of requests we're monitoring (authorized caller, creates,

 opens, stages)

 - Pathname to a log file.

 - Maximum size of the log file.

 - Debug settings.

 - Pathname to a dump file.

 - Maximum number of creates per host.

 - Maximum number of creates per user.

Chapter 7. Site Interfaces

7-152 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 - Maximum number of opens per host.

 - Maximum number of opens per user.

 - Maximum number of stages per host. (Note: Needs to be greater than

 the maximum number of opens per host.)

 - Maximum number of stages per user. (Note: Needs to be greater than

 the maximum number of opens per user.)

Open and initialize the logfile (if one is configured).

Log exit of this routine to the Site Policy Logfile.

Return status.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-153
Release 4.2, Revision 1

7.1.7. gk_site_Open

Purpose
This is an internal, site defined-and-implemented function that implements site policies which

decide if a caller is authorized to open the file now, later, or not at all. This function is not an RPC.

It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Open (

gk_EntryInfo_t EntryInfo, /* IN */
unsigned32 *WaitTimeP); /* OUT */

Description
This function is written by the customer site. It is called by gk_Open whenever an HPSS file open

occurs.

Parameters
EntryInfo Information about the file being opened.

WaitTimeP A pointer to the number of seconds to wait before retrying a

request.

Return Values
Upon successful completion, a value of zero (0) is returned which tells the Gatekeeper to continue

with the open request. After the Gatekeeper has returned success to the caller, it expects

gk_site_Close to be called when the file has been closed or if an error occurred

All non-zero return values will be treated as errors, thus the client will do the appropriate error

handling and terminate the open request. Non-zero error values are described in the Error

Conditions.

Error Conditions
The gk_site_Open routine is unsuccessful if any of the following are true:

HPSS_EACCES Permission is denied.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOTREADY Initialization has not completed.

HPSS_EPERM The operation is not permitted.

HPSS_ERETRY The operation should be retried after the delay, in seconds,

returned by the WaitTimeP parameter.

Related Information
See also gk_Close, gk_Open, gk_site_Close, and gk_site_OpenStats.

Clients
Gatekeeper.

Notes

Chapter 7. Site Interfaces

7-154 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Routine gk_site_OpenStats is called instead of gk_site_Open whenever an HPSS file open occurs

from an authorized caller when authorized caller requests are monitored.

If the operation should be retried, HPSS_RETRY is returned and the number of seconds the caller

should wait before retrying is returned in the WaitTimeP parameter. If the site does not specify the

WaitTimeP parameter (returns 0), the default value from the Gatekeeper’s specific configuration

field DefaultWaitTime is used instead.

Example Use:
Please see section 7.1.2., gk_site_Create.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-155
Release 4.2, Revision 1

7.1.8. gk_site_OpenStats

Purpose
This is an internal, site defined-and-implemented function that is called asynchronously by the

Gatekeeper when an authorized caller is opening a file. It is only called when authorized caller

requests and open requests are being monitored. This function is not an RPC. It is a call to a proce-

dure in a shared library.

Syntax
void
gk_site_OpenStats (

gk_EntryInfo_t EntryInfo); /* IN */

Description
This function is written by the customer site. It is called by gk_Open whenever an HPSS file open

occurs from an authorized caller when both open requests and authorized caller requests are

monitored.

Parameters
EntryInfo Information about the file being opened.

Return Values
None.

Error Conditions
None.

Related Information
See also gk_Close, gk_Open, gk_site_Close, and gk_site_Open.

Clients
Gatekeeper.

Notes
Routine gk_site_OpenStats is called instead of gk_site_Open whenever an HPSS file open occurs

from an authorized caller when authorized caller requests are monitored.

The Gatekeeper will queue all asynchronous calls to the site interfaces so that they are processed

in the order they are received. For example, if a site is monitoring authorized caller, create and

open requests and an authorized caller create request is issued before an authorized caller open

request, then the Gatekeeper will queue these requests so that gk_site_CreateStats is called before

gk_site_OpenStats.

Example Use:
Please see section 7.1.4., gk_site_CreateStats.

Chapter 7. Site Interfaces

7-156 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.9. gk_site_PassThru

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper to pass

information to the site interface. This function is not an RPC. It is a call to a procedure in a shared

library.

Syntax
signed32
gk_site_PassThru (

u_signed64 Param64, /* IN */
unsigned char *ParamString); /* IN */

Description
This function is written by the customer site. It will be used to pass information into the site inter-

face. The site interface can define what these parameters mean.

This function will be called by gk_PassThru.

Parameters
Param64 A 64 bit parameter.

ParamString NULL-terminated string parameter.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_PassThru routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOTREADY Initialization has not completed.

Related Information
See also gk_PassThru.

Clients
Gatekeeper.

Notes
The site may want to define bits in Param64 to correspond to special site actions. The ParamString
may be used in conjunction with a bit(s) in Param64 or for some other use. For example, if bit posi-

tion 0 is ON in Param64 then dump the current state to some file name passed in ParamString. The

site will need to write it’s own client to use this interface (i.e. BFS and SSM will not use this

interface).

Example Use:
Log entrance of this routine to the Site Policy Logfile.

If Param64 is zero, then

 Log exit of this routine to the Site Policy Logfile.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-157
Release 4.2, Revision 1

 Return status.

Verify bits passed into Param64 are valid options.

If an unsupported bit is set in Param64, then

 Log an exit error to the Site Policy Logfile.

 Return status.

If turned on the DumpState bit, then

 If ParamString is null or nil, then

Dump the state of each cache and all the other good information into

 the dump file.

 Else

Dump the state of each cache and all the other good information into

 the pathname stored in ParamString.

Log exit of this routine to the Site Policy Logfile.

Return status.

Chapter 7. Site Interfaces

7-158 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.10. gk_site_ReadSitePolicy

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper to

inform the site interface that the site policy file needs to be read. This function is not an RPC. It is

a call to a procedure in a shared library.

Syntax
signed32
gk_site_ReadSitePolicy (void);

Description
This function is written by the customer site. It will be used to inform the site interface that the site

policy file has been modified. This will allow the site interface to re-read the site policy file (if

defined) and enforce the new policy.

If the monitoring types are changed, the Gatekeeper will need to be restarted in order for the Bitfile

Server to learn about it. Therefore, ignore changes in monitor type policy.

This function will be called by gk_ReadSitePolicy.

Parameters
None.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_ReadSitePolicy routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOTREADY Initialization has not completed.

Related Information
See also gk_ReadSitePolicy, and gk_GetMonitorTypes.

Clients
Gatekeeper.

Notes
If the monitoring types are changed, the Gatekeeper will need to be restarted in order for the Bitfile

Server to learn about it. Therefore, ignore changes in monitor type policy.

Example Use:
Log entrance of this routine to the Site Policy Logfile.

If a site policy file exists, then

 Read the site policy file looking for things like:

- The types of requests we're monitoring (authorized caller, creates,

 opens, stages)

 - Pathname to a log file.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-159
Release 4.2, Revision 1

 - Maximum size of the log file.

 - Debug settings.

 - Pathname to a dump file.

 - Maximum number of creates per host.

 - Maximum number of creates per user.

 - Maximum number of opens per host.

 - Maximum number of opens per user.

 - Maximum number of stages per host. (Note: Needs to be greater than

 the maximum number of opens per host.)

 - Maximum number of stages per user. (Note: Needs to be greater than

 the maximum number of opens per user.)

Close the logfile (if one is already opened).

Open the possibly new logfile (if one is configured).

Log exit of this routine to the Site Policy Logfile.

Return status.

Chapter 7. Site Interfaces

7-160 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.11. gk_site_Shutdown

Purpose
This is an internal, site defined-and-implemented function that is called when the Gatekeeper is

shutdown. This function is used to do whatever shutdown and cleanup is needed by the site

module. This function is not an RPC. It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Shutdown (void);

Description
This function is written by the customer site. It will be called by the Gatekeeper’s internal shut-

down routine whenever the Gatekeeper is issued a shutdown request.

Parameters
None.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_Shutdown routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

Related Information
None.

Clients
Gatekeeper.

Notes
The Gatekeeper Server will not call this routine if it is issued a halt request or is crashing due to

some critical problem.

Example Use:
Log entrance of this routine to the Site Policy Logfile.

Flush and close the logfile (if one is already opened).

Return status.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-161
Release 4.2, Revision 1

7.1.12. gk_site_Stage

Purpose
This is an internal, site defined-and-implemented function that implements site policies which

decide if a caller is authorized to stage the file now, later, or not at all. This function not an RPC. It

is a call to a procedure in a shared library.

Syntax
signed32
gk_site_Stage (

gk_EntryInfo_t EntryInfo, /* IN */
unsigned32 *WaitTimeP); /* OUT */

Description
This function is written by the customer site. It is called by gk_Stage whenever an HPSS file stage

occurs.

Parameters
EntryInfo Information about the file being staged.

WaitTimeP A pointer to the number of seconds to wait before retrying a

request.

Return Values
Upon successful completion, a value of zero (0) is returned which tells the Gatekeeper to continue

with the stage request. After the Gatekeeper has returned success to the caller, it expects

gk_site_StageComplete to be called when the file has been staged or if an error occurred

All non-zero return values will be treated as errors, thus the client will do the appropriate error

handling and terminate the stage request. Non-zero error values are described in the Error

Conditions.

Error Conditions
The gk_site_Stage routine is unsuccessful if any of the following are true:

HPSS_EACCES Permission is denied.

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOTREADY Initialization has not completed.

HPSS_EPERM The operation is not permitted.

HPSS_ERETRY The operation should be retried after the delay, in seconds,

returned by the WaitTimeP parameter.

Related Information
See also gk_site_StageComplete, gk_site_StageStats, gk_Stage, and gk_StageComplete.

Clients
Gatekeeper.

Notes

Chapter 7. Site Interfaces

7-162 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Routine gk_site_StageStats is called instead of gk_site_Stage whenever an HPSS file stage occurs

from an authorized caller when authorized caller requests are monitored.

If the operation should be retried, HPSS_RETRY is returned and the number of seconds the caller

should wait before retrying is returned in the WaitTimeP parameter. If the site does not specify the

WaitTimeP parameter (returns 0), the default value from the Gatekeeper’s specific configuration

field DefaultWaitTime is used instead.

Example Use:
Please see section 7.1.2., gk_site_Create.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-163
Release 4.2, Revision 1

7.1.13. gk_site_StageComplete

Purpose
This is an internal, site defined-and-implemented function that is called by the Gatekeeper when a

file stage has completed. This function is not an RPC. It is a call to a procedure in a shared library.

Syntax
signed32
gk_site_StageComplete (

uuid_t ControlNo); /* IN */

Description
This function is written by the customer site. It will be called by gk_StageComplete while

processing a file stage completion of an HPSS file.

Parameters
ControlNo Unique identifier for the staged file which is now being

completed. This number was generated by the Gatekeeper

and passed into gk_site_Stage or gk_site_StageStats.

Return Values
Upon successful completion, a value of zero (0) is returned. Non-zero values are described in the

Error Conditions.

Error Conditions
The gk_site_StageComplete routine is unsuccessful if any of the following are true:

HPSS_EAGAIN Resources are temporarily unavailable.

HPSS_ENOENT Could not find an entry matching the ControlNo field in

EntryInfo.

HPSS_ENOTREADY Initialization has not completed.

Related Information
See also gk_site_Stage, gk_site_StageStats, gk_Stage, and gk_StageComplete.

Clients
Gatekeeper.

Notes
None.

Example Use:
Please see section 7.1.1., gk_site_Close.

Chapter 7. Site Interfaces

7-164 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.1.14. gk_site_StageStats

Purpose
This is an internal, site defined-and-implemented function that is called asynchronously by the

Gatekeeper when an authorized caller is staging a file. It is only called when authorized caller

requests and stage requests are being monitored. This function is not an RPC. It is a call to a proce-

dure in a shared library.

Syntax
void
gk_site_StageStats (

gk_EntryInfo_t EntryInfo); /* IN */

Description
This function is written by the customer site. It is called by gk_Stage whenever an HPSS file stage

occurs from an authorized caller when both stage requests and authorized caller requests are

monitored.

Parameters
EntryInfo Information about the file being staged.

Return Values
None.

Error Conditions
None.

Related Information
See also gk_site_Stage, gk_site_StageComplete, gk_Stage, and gk_StageComplete.

Clients
Gatekeeper.

Notes
Routine gk_site_StageStats is called instead of gk_site_Stage whenever an HPSS file stage occurs

from an authorized caller when authorized caller requests are monitored.

The Gatekeeper will queue all asynchronous calls to the site interfaces so that they are processed

in the order they are received. For example, if a site is monitoring authorized caller, create and

open requests and an authorized caller create request is issued before an authorized caller open

request, then the Gatekeeper will queue these requests so that gk_site_CreateStats is called before

gk_site_OpenStats.

Example Use:
Please see section 7.1.4., gk_site_CreateStats.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-165
Release 4.2, Revision 1

7.2. Account Validation Site Interface

This section describes the site customizable parts of the Account Validation APIs. These routines are

stored in a shared library to ease customization.

Chapter 7. Site Interfaces

7-166 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.2.1. av_site_AcctIdxToName

Purpose
Customizable routine to convert an account index to an account name

Syntax
signed32
av_site_AcctIdxToName(

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 CellId, /* IN */
unsigned32 Uid, /* IN */
unsigned32 Gid, /* IN */
unsigned32 Flags, /* IN */
acct_rec_t Acct, /* IN */
char *AcctName, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This site customizable routine converts from an account index to an account name. By default, this

routine is nothing more than a skeleton that returns HPSS_EUSEDEFAULT immediately.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

CellId Cell id of this account.

Uid User id (UID) of user.

Gid Group id (GID) of user.

Flags May be zero or more of the following OR’d together:

ACCT_FLAGS_VALID_INDEX – Verify that the specified

user is allowed to use this account index.

Acct Account Index to translate.

Outputs

AcctName Pointer to returned account name.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-167
Release 4.2, Revision 1

Error Conditions
HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_ENOENT The account in Acct does not exist. AcctName is set to the

string form of Acct. If ACCT_FLAGS_VALID_INDEX is set

in the Flags parameter, you should return HPSS_EPERM

instead..

HPSS_EPERM The specified user is not allowed to use that account index.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_AcctIdxToName

Clients
Client API via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

Example Usage
This example is the default behavior of the av_AcctIdxToName routine. See the implementation of

that routine, if available, for more details.

av_AcctIdxToName() {

if site style accounting {

if Acct == ACCT_REC_DEFAULT

lookup user default acct;

 else lookup account Acct;

if (not found) {

if Flags & ACCT_FLAGS_VALID_INDEX

error = HPSS_EPERM;

 else error = HPSS_ENOENT;

 }

else if (unix style accounting)

if (Acct == ACCT_REC_DEFAULT) Acct = Uid;

if (Acct != Uid && Flags & ACCT_FLAGS_VALID_INDEX)

error = HPSS_EPERM;

else {

Chapter 7. Site Interfaces

7-168 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

convert Cell,Acct into name

if not found && Flags & ACCT_FLAGS_VALID_INDEX

error = HPSS_EPERM;

}

}

return error;
}

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-169
Release 4.2, Revision 1

7.2.2. av_site_AcctNameToIdx

Purpose
Customizable routine to convert an account name to an account index

Syntax
signed32
av_site_AcctNameToIdx(

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 CellId, /* IN */
unsigned32 Uid, /* IN */
unsigned32 Gid, /* IN */
unsigned32 Flags, /* IN */
char * InAcctName, /* IN */
char *OutAcctName, /* OUT */
acct_rec_t *Acct, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This site customizable routine converts from an account name to an account index. By default, this

routine is nothing more than a skeleton that returns HPSS_EUSEDEFAULT immediately.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

CellId Cell identifier of user.

Uid User id (UID) of user.

Gid Group id (GID) of user.

Flags May be zero or more of the following OR’d together:

ACCT_FLAGS_VALID_INDEX – Verify that the specified

user is allowed to use this account index.

InAcctName Optional pointer to account name to translate. If this argu-

ment is NULL or points to an empty string, information about

the user’s default account index is returned.

Outputs

OutAcctName Optional pointer to returned account name. The name of the

user’s default account is returned if the InAcctName param-

eter is NULL or points to an empty string. Otherwise, the

value of InAcctName is returned. Note the name of the

Chapter 7. Site Interfaces

7-170 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

default account for UNIX Style accounting is the empty

string.

Acct Pointer to the returned account index.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions
HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_ENOENT The account specified does not exist. Acct is set to the integer

form of AcctName. If ACCT_FLAGS_VALID_INDEX is set in

the Flags parameter, you should return HPSS_EPERM

instead.

HPSS_EPERM The specified user is not allowed to use that account name.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_AcctNameToIdx

Clients
Client API via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

Example Usage
This example is the default behavior of the av_AcctNameToIdx See the implementation of that

routine, if available, for more details.

av_AcctNameToIdx() {

lookup_default = (InAcctName is NULL or empty);

if site style accounting {

if lookup_default

read default account for this user from metadata

if (not found and requiring default account)

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-171
Release 4.2, Revision 1

return HPSS_EPERM;

else if Flags & ACCT_FLAGS_VALID_INDEX

read this user’s account by name

else

read account metadata by name

} else if unix style accounting {

if (lookup_default)

*Acct = Uid;

else {

try to convert AcctName to number

if successful, *Acct = number;

}

}

if we set *Acct above {

error = lookup user from uid

if not found and require default account

error = HPSS_EPERM;

} else {

error = lookup user from account name

if (not found and Flags & ACCT_FLAGS_VALID_INDEX

error = HPSS_EPERM;

}

return error;
}

Chapter 7. Site Interfaces

7-172 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.2.3. av_site_Initialize

Purpose
Customizable routine to perform initialization of the Account Validation APIs.

Syntax
signed32
av_site_Initialize(

acct_config_t *AcctPolicy /* IN */
);

Description
This routine initializes the site customized APIs which receive client requests. Sites should

initialize any common state shared between the various site routines.

Parameters
Input

AcctPolicy Pointer to accounting policy metadata record.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions
Suggested error codes to use:

HPSS_SYSTEM Site code cannot initialize properly.

HPSS_ENOMEM Out of memory.

Related Information
av_Initialize

Clients
Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted. Any error returned from this

routine is considered fatal and will keep the server from starting up properly.

Example Usage

av_site_Initialize() {

allocate space for local site policy information;

read in local site policy information;

}

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-173
Release 4.2, Revision 1

7.2.4. av_site_Shutdown

Purpose
Customizable routine to shutdown the interface to the Account Validation APIs.

Syntax
signed32
av_site_Shutdown(void);

Description
This routine cleans up any state created by the customizable site routines.

Parameters
None

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions
Suggested error codes to use:

HPSS_EINVAL The APIs have not been initialized so there is nothing to

shutdown.

Related Information
None

Clients
Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted. Any error returned from this

routine is logged but otherwise ignored.

Example Usage

av_site_Shutdown() {

deallocate space for local site policy information;

}

Chapter 7. Site Interfaces

7-174 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.2.5. av_site_ValidateAccount

Purpose
Customizable routine to validate that a user is allowed to use an account index.

Syntax
signed32
av_site_ValidateAccount(

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 CellId, /* IN */
unsigned32 Uid, /* IN */
acct_rec_t Acct, /* IN */
unsigned32 Flags, /* IN */
acct_rec_t *ParentAcct, /* IN */
acct_rec_t *OutAcct, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This routine verifies that Acct is a valid account index to use for the user specified by the Uid and

CellId given. By default, this routine is nothing more than a skeleton that returns

HPSS_EUSEDEFAULT immediately. See av_ValidateAccount for the default behavior of this

routine.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

CellId Cell identifier of user.

Uid User id (UID) of user.

Acct Account Index to validate. . If this is ACCT_REC_DEFAULT,

the specified user’s default account index, if any, is used

instead.

Flags One or more of the following OR’d together:

ACCT_VALIDATE_FLAGS_CREATING – Caller is

performing a file or directory creation operation.

ACCT_VALIDATE_FLAGS_AUTH_CALLER – Request is

being made on the behalf of an authorized caller.

ParentAcct Pointer to parent account index.

Outputs

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-175
Release 4.2, Revision 1

OutAcct Account Index to use.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned signifying that the account is valid..

A non-zero value indicates an error condition.

Error Conditions
HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_EPERM The specified user is not allowed to use that account index.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_ValidateAccount

Clients
Bitfile Server and Name Server via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

If this request is being performed on the behalf of an authorized caller, it is generally not appro-

priate to return a permission error from this routine. See av_ValidateAccount.

Example Usage
This example is the default behavior of the av_ValidateAccount See the implementation of that

routine, if available, for more details.

av_ValidateAccount() {

if site style and creating a file and account inheritance is on {

if (parent account supplied and

(Acct is ACCT_REC_DEFAULT or parent account)) {

return with parent account;

} else if (no parent account supplied and

Acct != ACCT_REC_DEFAULT) {

/* assume caller (BFS) has determined parent already */

Chapter 7. Site Interfaces

7-176 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

return with Acct;

}

}

if (user is superuser)

return with Acct;

if (user is “nobody”) {

if auth caller

return with ACCT_REC_DEFAULT

return HPSS_EPERM;

}

if site style accounting {

Read the account from metadata.

If (not found and Acct == ACCT_REC_DEFAULT and auth caller) {

Create default account for this user;

} else if not found {

error = HPSS_EPERM;

}

} else if unix style {

if Acct == UID or ACCT_REC_DEFAULT or auth caller

return with Uid;

error = HPSS_EPERM;

}

return error;
}

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-177
Release 4.2, Revision 1

7.2.6. av_site_ValidateChacct

Purpose
Determine the account code to use when a file’s account index.

Syntax
signed32
av_site_ValidateChacct(

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 UserCellId, /* IN */
unsigned32 UserUid, /* IN */
unsigned32 FileCellId, /* IN */
unsigned32 FileUid, /* IN */
unsigned32 FileGid, /* IN */
acct_rec_t OldAcct, /* IN */
acct_rec_t NewAcct, /* IN */
acct_rec_t *OutAcct, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This routine determines what account index should be used when a file or directory’s account

index changes. By default, this routine is nothing more than a skeleton that returns

HPSS_EUSEDEFAULT immediately. See av_ValidateChacct for the default behavior of this

routine.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

UserCellId Cell identifier of user performing the operation.

UserUid User id (UID) of user performing the operation.

FileCellId Cell identifier of file’s owner.

FileUid User id (UID) of file’s owner.

FileGid User id (UID) of file’s owner.

OldAcct Old Account Index of file.

NewAcct New Account Index to put onto the file. If this is

ACCT_REC_DEFAULT then the user’s default account index

is used.

Outputs

Chapter 7. Site Interfaces

7-178 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

OutAcct Returned account index to use.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions
HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_EPERM The account specified may not be used by this user.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_site_ValidateChacct

Clients
Client API via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

Example Usage
This example is the default behavior of the av_ValidateChacct See the implementation of that

routine, if available, for more details.

av_ValidateChacct() {

if user is “nobody”, return with *OutAcct = ACCT_REC_DEFAULT;

if site style accounting {

if user is superuser and Acct != ACCT_REC_DEFAULT

return with NewAcct;

error = read user account from metadata

if not found {

if NewAcct == ACCT_REC_DEFAULT, return 0

else return HPSS_EPERM;

}

} else if unix style accounting {

if NewAcct is FileUid or ACCT_REC_DEFAULT

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-179
Release 4.2, Revision 1

return with *OutAcct = FileUid;

error = HPSS_EPERM;

}

return error;
}

Chapter 7. Site Interfaces

7-180 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7.2.7. av_site_ValidateChown

Purpose
Determine the account code to use when a file’s ownership or group changes.

Syntax
signed32
av_site_ValidateChown(

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 OldCellId, /* IN */
unsigned32 OldUid, /* IN */
unsigned32 OldGid, /* IN */
acct_rec_t OldAcct, /* IN */
unsigned32 NewCellId, /* IN */
unsigned32 NewUid, /* IN */
unsigned32 NewGid, /* IN */
acct_rec_t SessionAcct, /* IN */
acct_rec_t *OutAcct, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This routine determines what account index should be used when a file or directory’s ownership

changes or its group changes. By default, this routine is nothing more than a skeleton that returns

HPSS_EUSEDEFAULT immediately. See av_ValidateChown for the default behavior of this

routine.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

OldCellId Cell identifier of file’s owner.

OldUid User id (UID) of file’s owner.

OldGid Group id (GID) of file.

OldAcct Account Index of file.

NewCellId New Cell identifier of file’s owner.

NewUid New User id (UID) of file’s owner.

NewGid New Group id (GID) of file.

SessionAcct User’s current session account index.

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-181
Release 4.2, Revision 1

Outputs

OutAcct Returned account index to use.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions
HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_EPERM The account specified may not be used by this user.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_site_ValidateChown

Clients
Client API via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

Example Usage
This example is the default behavior of the av_ValidateChown See the implementation of that

routine, if available, for more details.

av_ValidateChown() {

if user is “nobody”, return with *OutAcct = ACCT_REC_DEFAULT;

if site style accounting {

error = read user account from metadata

if not found {

error = 0;

*OutAcct = ACCT_REC_DEFAULT;

}

} else if unix style accounting {

*OutAcct = NewUid;

}

Chapter 7. Site Interfaces

7-182 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

return error;

}

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-183
Release 4.2, Revision 1

7.2.8. av_site_ValidateCreate

Purpose
Customizable routine to determine the account code to use when creating a file or directory.

Syntax
signed32
av_site_ValidateCreate (

handle_t Binding, /* IN */
hpss_reqid_t RequestId, /* IN */
unsigned32 CellId, /* IN */
unsigned32 Uid, /* IN */
unsigned32 Gid, /* IN */
acct_rec_t Acct, /* IN */
acct_rec_t ParentAcct, /* IN */
acct_rec_t *OutAcct, /* OUT */
unsigned32 *OkToCache /* OUT */
);

Description
This routine determines what account index should be used when a file or directory is created. By

default, this routine is nothing more than a skeleton that returns HPSS_EUSEDEFAULT immedi-

ately. See av_ValidateCreate for the default behavior of this routine.

Parameters
Inputs

Binding Binding handle to this server.

RequestId Request Id to use when logging messages for this request.

CellId Cell identifier of new file’s owner.

Uid User id (UID) of new file’s owner.

Gid Group id (GID) of new file.

Acct Current session account index.

ParentAcct Account Index of parent directory.

Outputs

OutAcct Returned account index to use.

OkToCache True if Account Validation Library should cache the result.

See Notes for more information.

Return Values
Upon successful completion, zero (0) is returned. A non-zero value indicates an error condition.

Error Conditions

Chapter 7. Site Interfaces

7-184 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

HPSS_EUSEDEFAULT Tells the caller to use the default built-in behavior for this

routine.

Other suggested error codes to use are:

HPSS_EBUSY The server is busy. The request should be retried later.

HPSS_EPERM The account specified may not be used by this user.

HPSS_ESYSTEM This routine received an internal error. Usually a site custom-

ization problem.

Related Information
av_ValidateCreate

Clients
Client API via Gatekeeper

Notes
This routine can be customized by a site. It is the site’s responsibility to make sure that consistent

results are returned and performance is not adversely impacted.

The OkToCache argument should normally be TRUE. If a site customizes this routine it should

only set this argument to FALSE if the returned information can change over time and should not

be cached by the client.

Example Usage
This example is the default behavior of the av_ValidateCreate See the implementation of that

routine, if available, for more details.

av_ValidateCreate() {

if site style accounting and account inheritance and

parent account is supplied {

return with parent account;

}

if user is “nobody”, return with ACCT_REC_DEFAULT;

if site style accounting {

if (user is superuser and Acct != ACCT_REC_DEFAULT)

return ok with OutAcct = Acct;

error = read user account from metadata;

if not found {

if Acct == ACCT_REC_DEFAULT, return with OutAcct = Acct;

else return with HPSS_EPERM;

}

} else if unix style accounting {

*OutAcct = Uid;

}

log any error;

return error;
}

Chapter 7. Site Interfaces

HPSS Programmer’s Reference, Vol. 1 December 2000 7-185
Release 4.2, Revision 1

Chapter 7. Site Interfaces

7-186 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-187
Release 4.2, Revision 1

Chapter 8. Access Control List API Functions

8.1. API Interfaces

This section describes all the APIs that are provided in libhacl. In this discussion, the term "object" is used

to refer to files and directories.

8.1.1. hacl_ConvertACLToHACL

Purpose
Convert an access control list to string format.

Synopsis
#include "hacl.h"
int
hacl_ConvertACLToHACL(

ns_ACLConfArray_t *ACL_n, /* IN */
hacl_acl_t **ACL_h); /* OUT */

Description
Convert an access control list from the format used by the client API routines into a format suitable

for printing or use by other hacl routines.

Parameters
ACL_n the ACL to be converted

ACL_h the converted ACL

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL ACL_n was not a valid nameserver ACL

(other) an error returns by hpss_ConvertNamesToIds

See Also

Notes

Chapter 8. Access Control List API Functions

8-188 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.2. hacl_ConvertHACLToACL

Purpose
Convert and access control list to HPSS format

Synopsis
#include "hacl.h"
int
hacl_ConvertHACLToACL(

hacl_acl_t *ACL_h, /* IN */
ns_ACLConfArray_t **ACL_n) /* OUT */

Description
Convert an access control list into a format suitable for use with the client API functions that

manage access control lists.

Parameters
ACL_h the ACL to be converted

ACL_n the converted ACL

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL ACL_h was not a valid access control list

(other) error returned by hpss_ConvertNamesToIds

See Also

Notes
When ACL_n is no longer needed, the memory assigned to it must be returned by calling free().

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-189
Release 4.2, Revision 1

8.1.3. hacl_ConvertHACLToString

Purpose
Convert an access control list to a form suitable for printing

Synopsis
#include "hacl.h"
int
hacl_ConvertHACLToString(

hacl_acl_t *ACL_h, /* IN */
int Flags, /* IN */
char *EntrySeparator, /* IN */
char **ACL_s); /* OUT */

Description
Convert an access control list into a form suitable for printing.

Parameters
ACL_h the ACL to be converted

Flags flags that define how output is to be formatted

EntrySeparator string to be used to separate ACL entries

ACL_s the converted ACL

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
ENOMEM not enough memory available to hold ACL_S

See Also

Notes
The Flags argument is the sum of values that determine how the ACL will be formatted. The

following bits are defined:

HACL_M_USE_LOCAL_CELL_SPEC

HACL_M_USE_MASK_OBJ

If HACL_M_USE_LOCAL_CELL_SPEC is set, the id of the local cell will be displayed in all ACL

entries, even those that refer to principals in the local cell. Otherwise the cell will only be displayed

for entries that refer to foreign principals.

If HACL_M_USE_MASK_OBJ is set, the string will be adjusted to reflect the mask object. Other-

wise the actual ACL will be shown.

When ACL_s is no longer needed, the memory assigned to it must be returned by calling free().

Chapter 8. Access Control List API Functions

8-190 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.4. hacl_ConvertHACLPermsToPerms

Purpose
Convert permission string to HPSS format

Synopsis
#include "hacl.h"
int
hacl_ConvertHACLPermsToPerms(

char *HPerms, /* IN */
unsigned char *Perms); /* OUT */

Description
Convert a permission string in the format "rwxcid" into a form suitable for use with the client API

ACL management functions. Both uppercase and lower case letters may be used, A hyphen may

be used to indicate missing permission bits.

Parameters
HPerms the permissions to convert

Perms the converted permissions

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL Hperms contained an unrecognized character

See Also

Notes

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-191
Release 4.2, Revision 1

8.1.5. hacl_ConvertHACLTypeToType

Purpose
Convert access control list entry type to HPSS format

Synopsis
#include "hacl.h"
int
hacl_hacl_ConvertHACLTypeToType(

char HType, /* IN */
unsigned char *Type); /* OUT */

Description
Convert an ACL entry type into a form suitable for use with client API functions. Valid type names

include any of the standard DCE ACL entry types. These include user_obj, group_obj, other_obj,

user, group, foreign_user, foreign_group, foreign_other, any_other, mask_obj, user_obj_delegate,

group_obj_delegate, other_obj_delegate, foreign_other_delegate, and any_other_delegate. Strings

can be entered in upper or lower case letters. The extended type is not allowed. The unauthorized

type is allowed; but most client API routines will treat this ACL entry type as invalid. The output

type will be a valid nameserver ACL type such as ACL_OBJ_MASK, etc.

Parameters
HType the type to convert

Type the converted type

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL HType is not a valid ACL entry type

See Also

Notes

Chapter 8. Access Control List API Functions

8-192 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.6. hacl_ConvertPermsToHACLPerms

Purpose
Convert HPSS permission mask to string

Synopsis
#include "hacl.h"
int
hacl_hacl_ConvertPermsToHACLPerms(

unsigned char Perms, /* IN */
char *HPerms); /* OUT */

Description
Convert the permission mask returned by hpss_GetACL into a form suitable for printing and/or

input into other libhacl routines. The output takes the form of a string (e.g., "rwxcid") with missing

permissions replaced by a hyphen (e.g., "rwx---").

Parameters
Perms the permisions to convert

HPerms the converted permissions

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL Perms is not a valid permission mask

See Also

Notes

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-193
Release 4.2, Revision 1

8.1.7. hacl_ConvertStringsToHACL

Purpose
Convert access control list strings to HACL format

Synopsis
#include "hacl.h"
int
hacl_ConvertStringsToHACL(

int NumEntries, /* IN */
char *Entries[], /* IN */
char *DefaultCell, /* IN */
char *WhiteSpaceChars, /* IN */
int Flags, /* IN */
hacl_acl_t **ACL_h); /* OUT */

Description
Convert one or more string representations of access control list entries into a structure for input to

other libhacl functions.

Parameters
NumEntries Number of elements in Entries

Entries Array of ACL strings

DefaultCell Default Cell

WhiteSpaceChars Entry separator(s)

Flags Flags

ACL_h Resulting ACL

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
ENOMEM cannot allocate memory for ACL

EINVAL one or more ACL entries is in error

See Also

Notes
The Entries argument is an array of strings, each of which represents one or more ACL entries. If

there are several ACLs in any one string, they are separated by the character(s) listed in

WhiteSpace. The Flags argument defines the format of the incoming string. The following bits are

defined:

HACL_M_REQUIRE_PERMS

HACL_M_USE_LOCAL_CELL_SPEC

Chapter 8. Access Control List API Functions

8-194 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

If HACL_M_REQUIRE_PERMS is set, then the permission string must be supplied as part of the

ACL entry. Otherwise, the permission string is optional. The first case would be used when an

ACL is being created, while the second case would be used when an ACL entry is being deleted.

If HACL_M_USE_LOCAL_CELL_SPEC is set, the id of the local cell can optionally be provided in

all ACL entries, even those that refer to principals in the local cell. Otherwise the cell should be

specified only for entries that refer to foreign principals.

When ACL_h is no longer needed, the memory assigned to it must be returned using free().

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-195
Release 4.2, Revision 1

8.1.8. hacl_ConvertTypeToHACLType

Purpose
Convert an access control list entry type to string format

Synopsis
#include "hacl.h"
int
hacl_ConvertTypeToHACLType(

char Type, /* IN */
char *HType); /* OUT */

Description
Convert an ACL entry type into a form suitable for printing or use with other functions in libhacl.

The input type should be a valid nameserver ACL type such as ACL_OBJ_MASK, etc. The output

is the corresponding string (eg, "mask_obj").

Parameters
Type the entry type to convert

HType the converted type

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EINVAL Type was not a valid ACL entry type

See Also

Notes

Chapter 8. Access Control List API Functions

8-196 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.9. hacl_DeleteHACL

Purpose
Delete selected entries from an object’s access control list

Synopsis
#include "hacl.h"
int
hacl_DeleteHACL(

char *Path, /* IN */
unsigned32 Options, /* IN */
hacl_acl_t *ACL_h); /* IN */

Description
Delete the access control list entries specified in ACL_h from the file named by Path. The Options

argument is used to select whether an initial container or initial object ACLs are to be processed.

Parameters
Path path to the object

Options processing options

ACL_h ACL entries to be deleted

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EACCES search permission is denied on a component in Path

EFAULT the Path or ACL parameter is a NULL pointer

EINVAL ACL_h contains invalid data

ENAMETOOLONG the length of Path exceeds a system-imposed limit

ENOENT the named object does not exist, or Path is an empty string

ENOTDIR a component of Path is not a directory

EPERM no privilege for attempted operation

ESRCH a specified ACL entry could not be found in the object’s

existing ACL

See Also

Notes
The Options flag determines processing options. Values include:

HPSS_ACL_OBJECT_ACL - regular ACL

HPSS_ACL_INITIAL_CONTAINER_ACL - initial container ACL

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-197
Release 4.2, Revision 1

HPSS_ACL_INITIAL_OBJECT_ACL - initial object ACL

Chapter 8. Access Control List API Functions

8-198 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.10. hacl_GetHACL

Purpose
Get an object’s access control list

Synopsis
#include "hacl.h"
int
hacl_GetHACL(

char *Path, /* IN */
unsigned32 Options, /* IN */
hacl_acl_t **ACL_h); /* OUT */

Description
Get the access control list of a object. The Options argument is used to select whether an initial

container or initial object ACL is to be obtained.

Parameters
Path path to the object

Options processing options

ACL_h the object’s access control list

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EACCES search permission is denied on a component in Path

EFAULT the Path or ACL parameter is a NULL pointer

ENAMETOOLONG the length of Path exceeds a system-imposed limit

ENOENT the named object does not exist, or Path is an empty string

ENOTDIR a component of Path is not a directory

EPERM no privilege for attempted operation

See Also

Notes
The Options flag determines processing options. Values include:

HPSS_ACL_OBJECT_ACL - regular ACL

HPSS_ACL_INITIAL_CONTAINER_ACL - initial container ACL

HPSS_ACL_INITIAL_OBJECT_ACL - initial object ACL

When ACL_h is no longer needed, the memory assigned to it must be returned by calling free().

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-199
Release 4.2, Revision 1

8.1.11. hacl_SetHACL

Purpose
Replace an object’s access control list with a new one

Synopsis
#include "hacl.h"
int
hacl_SetHACL(

char *Path, /* IN */
unsigned32 Options, /* IN */
hacl_acl_t *ACL_h); /* IN */

Description
Replace the access control list of the object named by Path with a new one given by ACL_h. The

Options argument is used to select whether an initial container or initial object ACL are to be

processed.

Parameters
Path path to the object

Options processing options

ACL_h the new ACL

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EACCES search permission is denied on a component in Path

EFAULT the Path or ACL parameter is a NULL pointer

EINVAL ACL_h contains invalid data

ENAMETOOLONG the length of Path exceeds a system-imposed limit

ENOENT the named object does not exist, or Path is an empty string

ENOTDIR a component of Path is not a directory

EPERM no privilege for attempted operation

See Also

Notes
The Options flag determines processing options. Values include:

HPSS_ACL_OBJECT_ACL - regular ACL

HPSS_ACL_INITIAL_CONTAINER_ACL - initial container ACL

HPSS_ACL_INITIAL_OBJECT_ACL - initial object ACL

Chapter 8. Access Control List API Functions

8-200 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.12. hacl_SortHACL

Purpose
Sort an access control list into canonical order

Synopsis
#include "hacl.h"
void
hacl_SortHACL(

hacl_acl_t *ACL_h); /* IN/OUT */

Description
Sort the entries of an access control list into a standard order.

Parameters
ACL_h the ACL to be sorted

Return Values
None.

Error Conditions
None. The function always succeeds.

See Also

Notes
The "standard" order arranges ACL entries in the order that they will be considered to decide

whether a principal has access to an object. The order is the same order that is used by the dcecp

and acl_edit utilities for listing ACL entries. For example, the mask_obj will appear first, followed

by the user_obj, user, foreign_user, etc. entries. If there are two entries of the same type, they will

be sorted based on the EntryName and/or CellName fields.

This routine should be called before displaying an ACL using hacl_ConvertHACLToString.

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-201
Release 4.2, Revision 1

8.1.13. hacl_UpdateHACL

Purpose
Change selected entries in an object’s access control list

Synopsis
#include "hacl.h"
int
hacl_UpdateHACL(

char *Path, /* IN */
unsigned32 Options, /* IN */
hacl_acl_t *ACL_h); /* IN */

Description
Update selected entries in an access control list of an object. The Options argument is used to select

whether an initial container or initial object ACL is to be processed.

Parameters
Path path to the object

Options processing options

ACL_h ACL to be updated

Return Values
If successful, returns zero. Otherwise, returns one of the values described below.

Error Conditions
EACCES search permission is denied on a component in Path

EFAULT the Path or ACL parameter is a NULL pointer

EINVAL ACL_h contains invalid data

ENAMETOOLONG the length of Path exceeds a system-imposed limit

ENOENT the named object does not exist, or Path is an empty string

ENOTDIR a component of Path is not a directory

EPERM no privilege for attempted operation

See Also

Notes
The Options flag determines processing options. Values include:

HPSS_ACL_OBJECT_ACL - regular ACL

HPSS_ACL_INITIAL_CONTAINER_ACL - initial container ACL

HPSS_ACL_INITIAL_OBJECT_ACL - initial object ACL

Chapter 8. Access Control List API Functions

8-202 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

HPSS_ACL_DONT_CALC_MASK - don’t calculate mask

HPSS_ACL_CALC_MASK_IGNORE_ERRORS - calculate mask unconditionally

Chapter 8. Access Control List API Functions

HPSS Programmer’s Reference, Vol. 1 December 2000 8-203
Release 4.2, Revision 1

8.2. Data Definitions

This section describes the data definitions used by the routines in libhacl.

8.2.1. HACL-style Access Control List - hacl_acl_t

Description
The Access Control List structure defines an array of ACL entries.

Format
typedef struct hacl_acl {
int Length;
char DefaultCell[HPSS_MAX_DCE_NAME];
hacl_acl_entry_t ACLEntry[1];
} hacl_acl_t;

Length
The number of ACL entries in array ACLEntry.

DefaultCell
The cell used to set a context for interpreting the ACL.

ACLEntry
An array of ACL entries.

Chapter 8. Access Control List API Functions

8-204 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.2.2. HACL-style Access Control List Entry - hacl_acl_entry_t

Description
The Access Control List Entry structure defines one entry in an ACL.

Format
typedef struct hacl_acl_entry {
char EntryType[HACL_MAX_TYPE];
char Perms[HACL_MAX_PERMS];
char EntryName[HPSS_MAX_PRINCIPAL_NAME];
char CellName[HPSS_MAX_DCE_NAME];
} hacl_acl_entry_t;

EntryType
The type of ACL entry; e.g., "user_obj", etc.

Perms
The permissions, composed of characters in "rwxcid-".

EntryName
Depending on the EntryType, the User name, group name, or cell name.

CellName
The cell name. Qualifies user and group names to make them unique.

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-1
Release 4.2, Revision 1

Appendix A - Programming Examples

Coding examples for opening, reading, writing, and closing HPSS files are provided below. The majority

of the HPSS Client API functions mimic the standard POSIX I/O and file functions. As a result, UNIX pro-

grammers should have little difficulty in using the APIs, with the exception of enhanced function calls

such as the hpss_ReadList and hpss_WriteList APIs. Examples of these extended functions are provided

in Examples 3 and 4.

Sample Makefile for Example Code

The following Makefile may be used to compile the example code in the sections below: The Makefile is

for an AIX system.

CC = xlc_r4

CFLAGS = -I/opt/hpss/include -I/usr/lpp/encina/include

LIB_DIRS = -L/opt/hpss/lib \

 -L/usr/lpp/encina/lib

LIBS = $(LIB_DIRS) \

 -ldce \

 -lEncSfs \

 -lEncina \

 -lhpss \

 /opt/hpss/tools/lib/tools.o

.c.o:;@echo $(INDENT) Compiling $< ...

@$(CC) $(CFLAGS) -c $<

all: api_read api_write api_readlist api_writelist diropts fileattrs \

links statfs api_config

api_read: read.o

#$(CC) $(LIBS) -o $@ read.o

api_write: write.o

#$(CC) $(LIBS) -o $@ read.o

api_readlist: readlist.o

#$(CC) $(LIBS) -o $@ readlist.o

Appendix A - Programming Examples

A-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

api_writelist: writelist.o

#$(CC) $(LIBS) -o $@ writelist.o

diropts: diropts.o

#$(CC) $(LIBS) -o $@ diropts.o

fileattrs: fileattrs.o

#$(CC) $(LIBS) -o $@ fileattrs.o

links: links.o

#$(CC) $(LIBS) -o $@ links.o

statfs: statfs.o

#$(CC) $(LIBS) -o $@ statfs.o

api_config: api_config.o

#$(CC) $(LIBS) -o $@ api_config.o

Example 1: Simple write - hpss_Write

This example demonstrates a simple application which opens an HPSS file, initializes an output buffer

with each 8 bytes numbered, writes multiple records, and then closes the file. This program is passed the

following arguments:

argv[1] HPSS file name

argv[2] number of bytes to write

argv[3] Class of Service ID

argv[4] record size

#include <errno.h>

#include <fcntl.h>

#include <malloc.h>

#include <string.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#include "hpss_api.h"

#include "hpss_types.h"

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-3
Release 4.2, Revision 1

#include "u_signed64.h"

#define MAX_BUF_SIZE 16777216

/*

 * MAIN

 *

 */

main(argc, argv)

int argc;

char *argv[];

{

char *buf;

char *buf_ptr;

register cnt;

int eflags, eperms, erecsize;

int fd, last_blk_cnt, rc, rc2;

hpss_cos_hints_t hints_in; /* hints input structure */

hpss_cos_hints_t hints_out; /* hints output structure */

hpss_cos_priorities_t hints_pri; /* hints priority structure */

u_signed64 erecsize64, rec_cnt, i, count, local_count;

u_signed64 word64_num;

/* Initialize local variables */

rc, rc2 = 0;

word64_num = cast64m(1);

decchar_to_u64(argv[2], &count, 20);

eflags = O_WRONLY | O_CREAT;

eperms = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH;

memset(&hints_in, 0, sizeof(hpss_cos_hints_t));

memset(&hints_pri, 0, sizeof(hpss_cos_priorities_t));

/*

 * if hints are specified (argv[3])

 * Call atoi() to convert the COSId to an integer

 * else

 * Set the COSId to 1

 * Set the COS ID priority in COS priority structure

*/

if (argc >= 4)

Appendix A - Programming Examples

A-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hints_in.COSId = atoi(argv[3]);

else

hints_in.COSId = 1;

hints_pri.COSIdPriority = REQUIRED_PRIORITY;

/* if record size is specified (argv[4])

 * Call atoi() to convert record size to an integer

 * else

 * Set record size to the default (1MB)

 */

if (argc >= 5)

erecsize = atoi(argv[4]);

else

erecsize = 1048576;

/*

 * Call hpss_Open() to open the HPSS file

 * if return code < 0

 * Output an error message and return

 */

if ((fd = hpss_Open (argv[1], eflags, eperms, &hints_in, &hints_pri,

&hints_out)) < 0) {

printf("HPSS file open failed, rc = %d\n", fd);

exit(-1);

}

/*

 * Call malloc() to allocate an output buffer

 * if return code = NULL

 * Output an error message and return

 */

if ((buf_ptr = (char *) malloc(erecsize)) == NULL) {

perror("Malloc failed");

return(-1);

}

/*

 * loop until requested number of bytes has been written to the HPSS file

 * Number each 8 bytes of the output buffer

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-5
Release 4.2, Revision 1

 * Call hpss_Write() to write the HPSS file

 * if return code < 0

 * Output an error message and return

 */

erecsize64 = cast64m(erecsize);

local_count = add64m(count, erecsize64);

local_count = sub64m(local_count, cast64m(1));

rec_cnt = div64m(local_count, erecsize);

last_blk_cnt = low32m(mod64m(count, erecsize));

if (last_blk_cnt == 0) last_blk_cnt = erecsize;

i = cast64m(1);

for (; ge64m(rec_cnt, i);) {

if (eq64m(rec_cnt, i)) erecsize = last_blk_cnt;

buf = buf_ptr;

for (cnt=0; cnt<(erecsize+7)/8; cnt++) {

*((u_signed64 *) buf) = word64_num;

word64_num = add64m(word64_num, cast64m(1));

buf += 8;

}

if ((rc = hpss_Write (fd, buf_ptr, erecsize)) < 0) {

printf("HPSS write failed, rc = %d\n", rc);

rc2 = -1;

break;

}

i = add64m(i, cast64m(1));

}

/*

 * Call hpss_Close() to close the HPSS file

 * if return code < 0

 * Output an error message and return

 */

if ((rc = hpss_Close (fd)) < 0) {

printf("HPSS file close failed, rc = %d\n", rc);

}

if (rc2 == 0) printf("file %s created\n", argv[1]);

exit(rc2);

Appendix A - Programming Examples

A-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

}

Example 2: Simple read - hpss_Read

This example demonstrates a simple application which opens an HPSS file, reads and verifies the file con-

tents, and then closes the file. This program is passed the following arguments:

argv[1] HPSS file name

#include <fcntl.h>

#include <malloc.h>

#include <string.h>

#include <unistd.h>

#include "hpss_api.h"

#include "u_signed64.h"

#define MAX_BUF_SIZE 16777216

main(int argc, char *argv[])

{

char *buf;

register cnt;

int flags, perms, recsize;

char *buf_ptr;

int fd, i0, i1, last_blk_cnt, rc, rc2;

hpss_cos_hints_t hints_in;

hpss_cos_hints_t hints_out;

hpss_cos_priorities_t hints_pri;

u_signed64 recsize64, rec_cnt, i;

u_signed64 word64_num;

/* Initialize local variables */

rc, rc2 = 0;

word64_num = cast64m(1);

flags = O_RDONLY;

recsize = MAX_BUF_SIZE;

memset(&hints_in, 0, sizeof(hpss_cos_hints_t));

memset(&hints_pri, 0, sizeof(hpss_cos_priorities_t));

/*

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-7
Release 4.2, Revision 1

 * Call hpss_Open() to open the HPSS file

 * if return code < 0

 * Output an error message and return

 */

if ((fd = hpss_Open (argv[1], flags, perms, &hints_in, &hints_pri,

hints_out)) < 0) {

printf("HPSS open failed, rc = %d\n", fd);

return(-1);

}

/*

 * Call malloc() to allocate an output buffer

 * if return code = NULL

 * Output an error message and return

 */

if ((buf_ptr = (char *) malloc(MAX_BUF_SIZE)) == NULL) {

perror("Malloc failed");

return(-1);

}

/*

 * loop until end of file

 * Call hpss_Read() to read the HPSS file

 * if return code < 0

 * Output an error message and return

 * Verify each 8 bytes of the input buffer is correctly numbered

 */

recsize64 = cast64m(recsize);

for (;;) {

if ((rc = hpss_Read (fd, buf_ptr, recsize)) < 0) {

printf("HPSS read failed, rc = %d\n", rc);

rc2 = -1;

break;

}

if (rc == 0) break;

buf = buf_ptr;

Appendix A - Programming Examples

A-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

for (cnt=0; cnt<(rc+7)/8; cnt++) {

if (memcmp(buf, &word64_num, 8)) {

i0 = *buf;

i1 = *(buf + 4);

printf("Error in file contents: word64=%d %d, value=%d %d\n",

word64_num.high, word64_num.low, i0, i1);

}

word64_num = add64m(word64_num, cast64m(1));

buf += 8;

}

}

/*

 * Call hpss_Close() to close the HPSS file

 * if return code < 0

 * Output an error message and return

 */

if ((rc = hpss_Close (fd)) < 0) {

printf("HPSS close failed, rc = %d\n", rc);

}

exit(rc2);

}

Example 3: Write List - Mover to Mover Protocol

This example is provided to illustrate use of the hpss_WriteList() function.

/*==
 *
 * Name:
 * writelist.c - Write an HPSS file in parallel using hpss_Writelist,
 * multiple data-receiving threads, and the mover protocol
 * routines, supporting TCP, IPI-3, and shared-memory data
 * transfers
 *
 * Disclaimer:
 * This software is provided "as is" and may be freely copied and
 * modified as desired.
 *
 * Usage:
 * writelist [-vcx] [-n maxConnections] [-s bufferSize]

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-9
Release 4.2, Revision 1

 * [-C cos] [-S filesize] [-h hostname]*
 * [-p tcp|shm|ipi]* [-x sbmax] <path>
 *
 * -v Prints verbose output
 * -c Prints low-level control information
 * -t Print transfer rate in whole bytes per second
 *
 * -n maxConnections
 * Maximum number of open Mover transfer connections
 * (default is DEFAULT_MAX_CONNECTIONS).
 *
 * -s bufferSize Buffer size used to send data within each transfer
 * thread (default is defined by DEFAULT_BUFFER_SIZE).
 *
 * -C cos Class of Service to use for creating file. Default
 * is to select one based on file size.
 *
 * -S filesize Total number of bytes to write.
 * (default is defined by DEFAULT_FILE_SIZE).
 *
 * -h hostname
 * Specifies one or more hostnames associated with the
 * desired network interface(s) for TCP-based transfers
 * (default is network associated with default hostname).
 * If multiple hostnames are specified, each transfer
 * threads will be assigned one of the network interfaces
 * in a round-robin fashion.
 *
 * -p tcp|shm|ipi
 * By default, TCP and shared memory transfers are enabled
 * (as well as IPI-3 if the program is compiled for IPI
 * support). The -p option can be repeatedly used to
 * specify which transfer options to make available. For
 * example, to restrict transfers to TCP only, use
 * "-p tcp". To make both TCP and IPI-3 available as
 * options (but not shared memory), use "-p tcp -p ipi".
 *
 * -x sbmax Sets the initial upper limit on the TCP socket
 * send/receive buffer sizes
 *
 * <path> The HPSS file to write. Relative pathnames are
 * resolved from the perspective of the user's home
 * directory within HPSS.
 *
 * Description:
 *
 * This program writes all data stored in an HPSS file named <path> using
 * parallel I/O via the hpss_WriteList API and HPSS Mover protocol
 * functions. The program negotiates with the corresponding HPSS Movers
 * to determine which transfer protocol to use. The application is
 * coded to handle TCP, IPI-3, and/or shared memory transfers.
 *
 * The -v option enables the user to see each transfer of data from a
 * Mover, the order the data is sent, and what protocol is used. The

Appendix A - Programming Examples

A-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 * -c option shows control debug information.
 *
 * The -t argument can be used to output a throughput number that can be
 * more easily used by other programs, spreadsheets, etc.
 *
 * The -s argument defines the size of each memory buffer used to send
 * data within each transfer thread. If not specified, a default value
 * is used.
 *
 * The -n argument defines the maximum number of simultaneous connections
 * to HPSS Movers, which also corresponds to the number of memory buffers
 * used in receiving data in parallel. If not specified, a default value
 * is used. This program will create a contiguous shared-memory segment
 * to send data, the size of which is <bufferSize> times <maxConnections>
 * (regardless of which transfer protocol is selected).
 *
 * Since segments of an HPSS bitfile may be striped across multiple
 * devices (and Movers) and/or may reside at different levels in a
 * hierarchy, multiple buffers/threads can be used to send data in
 * parallel to different Movers who are trying to send data
 * independently.
 *
 * The -h option is used to specify an alternate hostname interface(s) to
 * use for TCP-based data transfers.
 *
 * This program must be compiled with the -DIPI3_SUPPORT option in order
 * to support IPI-3 data transfers and it must be executed on a machine
 * that support HIPPI and IPI-3.
 *
 * For best performance, the buffer size should match either the VV block
 * size or the Mover buffer size, whichever is less, and the maximum
 * number of connections should be equal to the total number of devices
 * the file is spread across.
 *
 * This program requires that the user already have DCE credentials prior
 * to invocation.
 *
 ==/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>

#include "hpss_api.h"
#include "u_signed64.h"
#include "mvr_protocol.h"

#include "support.h"

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-11
Release 4.2, Revision 1

/* Define program default values */

#define DEFAULT_BUFFER_SIZE (4*1048576)
#define DEFAULT_MAX_CONNECTIONS 32
#define DEFAULT_SOCKET_SBMAX (8*1048576)
#define DEFAULT_FILE_SIZE (100*1048576)

/* Define maximum values for sanity checks */

#define MAX_BUFFER_SIZE (32*1048576)
#define MAX_MAX_CONNECTIONS 32

/* Define local function prototypes */

void manage_mover_connections ();
void transfer_routine (int socketDes);
void socket_setoptions (int socketFd);
void signal_thread ();
void handle_signals ();
void init_buf(char *Buf,int Size);

/* Define a structure of information to track for each Mover transfer
 * connection/thread
 */
typedef struct {
 int active; /* Whether thread/connection is active */
 pthread_t threadId; /* Id of the transfer thread */
 int controlSocketFd; /* Control socket descriptor */
 int ipiFd; /* IPI-3 transfer file descriptor */
 int shmId; /* Shared memory segment id */
} connection_info_t;

/* Define global variables (globals start with capital letter)
 */
int RequestId; /* HPSS request id */
int TransferStatus; /* Overall status of the data transfer
 * (HPSS_E_NOERROR if ok) */
int FileDes; /* HPSS file descriptor */
int ControlSocket = 0;/* Central Mover connection socket */
sigset_t SigMask; /* Signal mask */

/* Define global variables associated with command-line options
 */
typedef struct {
 struct hostent *hostEntry;
 char hostname[128];
 unsigned long ipAddr;
} tcphost_t;

unsigned32 NumHosts; /* -h argument counter */
tcphost_t *HostList; /* -h argument (length is NumHosts) */
int VerboseOutput = 0; /* -v argument (0=off, 1=on) */
int ControlOutput = 0; /* -c argument (0=off, 1=on) */

Appendix A - Programming Examples

A-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

int WholeBytesOutput = 0; /* -x argument (0=off, 1=on) */
unsigned32 MaxConnections; /* -n argument */
unsigned32 BufferSize; /* -s argument */
unsigned32 SbMax = DEFAULT_SOCKET_SBMAX; /* -x argument */
u_signed64 FileSize; /* Size of the HPSS file */

/* The following global variables are protected by the mutex GlobalVarMutex
 */
pthread_mutex_t GlobalVarMutex;

connection_info_t *Connections;/* Array of connection thread info */

int CurrentHost = 0; /* Index into HostList for next TCP address */
u_signed64 TotalBytesWritten; /* Actual bytes sent to Movers */

/*==
 * Function:
 * hpss_error - Print out info on an HPSS error condition
 *
 * Arguments:
 * function Name of the HPSS function that returned "status"
 * status HPSS error code
 *
 * Return Values:
 * <none>
 ==/

void hpss_error (char *function, signed32 status)
{
 fprintf(stderr, "%s (%ld): %s\n", function, status, status_string(status));
}

/*==
 * Function:
 * terminate - Gracefully terminate the process, closing resources
 * appropriately
 *
 * Arguments:
 * exitStatus Value used as the exit status
 *
 * Return Values:
 * This function terminates the process and therefore does not
 * return.
 ==/

void terminate (int exitStatus)
{
 int index;

 /* Close down the HPSS file if it is open
 */
 if (FileDes > 0) {
 if (ControlOutput) printf("Closing HPSS file descriptor %d\n", FileDes);
 (void)hpss_Close (FileDes);

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-13
Release 4.2, Revision 1

 }

 /* Step through the connections and for any that are active, delete the
 * shared memory segment if it exists
 */
 for (index=0; index < MaxConnections; index++) {

 if (Connections[index].active && Connections[index].shmId != -1) {
 if (ControlOutput) printf("Deleting shared memory for thread %d\n",
 index+1);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 }
 }

 exit (exitStatus);
}

/*==
 * main
 ==/

main (int argc, char *argv[])
{
 int i, badUsage; /* Counters and flags */
 size_t tmp; /* Temporary variables */
 int cos=0; /* Specified COS (if any) */
 char *programName, *s;
 IOD_t iod; /* IOD passed to hpss_WriteList */
 IOR_t ior; /* IOR returned from hpss_WriteList */
 srcsinkdesc_t src, sink; /* IOD source/sink descriptors */
 hpss_cos_hints_t hints;
 hpss_cos_priorities_t pris;
 hpss_cos_md_t cosinfo;
 struct sockaddr_in controlSocketAddr; /* control socket addresses */
 int writeListFlags = 0; /* Flags on hpss_WriteList call */
 pthread_t manageConnectionsThread; /* Spawned thread id */
 pthread_addr_t pthreadStatus;
 signed32 status; /* HPSS return code/status */
 timestamp_t startTime, endTime, totalTime; /*various timestamps*/

 totalTime.tv_sec = totalTime.tv_usec = 0;
 RequestId = getpid();

 memset (&iod, 0, sizeof(iod));
 memset (&src, 0, sizeof(src));
 memset (&sink, 0, sizeof(sink));
 memset(&hints,0,sizeof(hints));
 memset(&pris,0,sizeof(pris));

 programName = argv[0];
 badUsage = 0;
 MaxConnections = DEFAULT_MAX_CONNECTIONS;
 BufferSize = DEFAULT_BUFFER_SIZE;
 FileSize = cast64m(DEFAULT_FILE_SIZE);

Appendix A - Programming Examples

A-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 src.Flags = 0;

 /* Process the arguments
 */

 while (--argc > 0 && (*++argv)[0] == '-') {

 for (s = argv[0]+1; *s != '\0'; s++) {

 switch (*s) {

 case 'v': /* for verbose output */
 VerboseOutput = 1;
 break;

 case 'c': /* for low-level control output */
 ControlOutput = 1;
 break;

 case 't': /* for printing whole byte throughput rate */
 WholeBytesOutput = 1;
 break;

 case 'n': /* to specify max connections/no. buffers */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 MaxConnections = atoi((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 's': /* to specify buffer size */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 BufferSize = atobytes((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'x': /* to specify socket buffer sizes */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 SbMax = atobytes((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'S': /* to specify file size */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 FileSize = atobytes64((++argv)[0]);
 argc -= 1;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-15
Release 4.2, Revision 1

 }
 else
 badUsage = 1;
 break;

 case 'C': /* to specify class of service */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 cos = atoi((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'h': /* TCP hostname */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 if (!HostList) {
 HostList = (tcphost_t *)malloc (sizeof(*HostList));
 }
 else {
 HostList = (tcphost_t *)realloc (HostList, sizeof(*HostList) *
 (NumHosts + 1));
 }

 strncpy (HostList[NumHosts].hostname, (++argv)[0],
 sizeof(HostList[NumHosts].hostname));

 /* Make sure it is a legitimate hostname */

 HostList[NumHosts].hostEntry =
 gethostbyname (HostList[NumHosts].hostname);

 if (!(HostList[NumHosts].hostEntry)) {
 fprintf (stderr, "Invalid hostname \"%s\"\n",
 HostList[NumHosts].hostname);
 perror ("gethostbyname");
 badUsage = 1;
 }
 else {
 HostList[NumHosts].ipAddr =
 ((unsigned32)(HostList[NumHosts].hostEntry->h_addr_list[0]));
 ++NumHosts;
 }

 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'p': /* transfer protocol */
 if (argc > 1) {
 ++argv;

Appendix A - Programming Examples

A-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 if (!strcmp(argv[0], "tcp")) {
 src.Flags |= XFEROPT_IP;
 }
 else if (!strcmp(argv[0], "ipi")) {
 src.Flags |= XFEROPT_IPI3;
 }
 else if (!strcmp(argv[0], "shm")) {
 src.Flags |= XFEROPT_SHMEM;
 }
 else {
 printf ("Invalid transfer protocol - use tcp, shm, or ipi\n");
 badUsage = 1;
 }
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 default:
 badUsage = 1;

 } /* end switch */
 } /* end for */
 } /* end while */

 if (argc != 1) badUsage = 1;

 if (badUsage) {
 printf("Usage:\n\n");
 printf("%s [-vct] [-n maxConnections] [-s bufferSize]\n",
 programName);
 printf(" [-C cos] [-S filesize] [-h hostname]*\n");
 printf(" [-p tcp|shm|ipi]* [-x sbmax] <path>\n\n");
 printf("-v\n");
 printf("\tPrints verbose output.\n\n");
 printf("-c\n");
 printf("\tPrints low-level control information.\n\n");
 printf("-t\n");
 printf("\tPrints throughput rate in whole bytes.\n\n");
 printf("-n maxConnections\n");
 printf("\tMaximum number of concurrent transfer threads that ");
 printf("are available for\n");
 printf("\tcommunicating simultaneously with HPSS Movers. This ");
 printf("corresponds to the\n");
 printf("\tnumber of buffers allocated to send HPSS data. ");
 printf("Default is %d.\n\n", DEFAULT_MAX_CONNECTIONS);
 printf("-s bufferSize\n");
 printf("\tBuffer size used to send data within each transfer thread. ");
 printf("Values\n");
 printf("\tsuch as \"2mb\" can be specified. Default is ");
 print_bytes (DEFAULT_BUFFER_SIZE);
 printf(".\n\n");
 printf("-C cos\n");

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-17
Release 4.2, Revision 1

 printf("\tClass of Service to use for creating file.\n");
 printf("\tDefault is to select one based on file size.\n\n");
 printf("-S filesize\n");
 printf("\tTotal number of files to write. Values such as \"2mb\" can ");
 printf("be specified.\n");
 printf("\tDefault is ");
 print_bytes (DEFAULT_FILE_SIZE);
 printf(".\n\n");
 printf("-h hostname\n");
 printf("\tSpecifies one or more hostnames associated with the desired ");
 printf("network\n");
 printf("\tinterface(s) for TCP-based transfers (default is network ");
 printf("associated\n");
 printf("\twith default hostname). If multiple hostnames are ");
 printf("specified, each\n");
 printf("\ttransfer thread will be assigned one of the network ");
 printf("interfaces in a\n");
 printf("\tround-robin fashion.\n\n");
 printf("-p tcp|shm|ipi\n");
 printf("\tBy default, TCP and shared memory transfers are enabled (as ");
 printf("well as\n");
 printf("\tIPI-3 if the program is compiled for IPI support). The -p ");
 printf("option can\n");
 printf("\tbe repeatedly used to specify which transfer options to ");
 printf("make available.\n\n");
 printf("-x sbmax\n");
 printf("\tSets the initial upper limit on the TCP socket send/receive ");
 printf("buffer sizes\n");
 printf("\tDefault is ");
 print_bytes (SbMax);
 printf(".\n\n");
 printf("<path>\n");
 printf("\tThe HPSS file to write. Relative pathnames are resolved ");
 printf("from the\n");
 printf("\tperspective of the user's home directory within HPSS.\n");

 terminate (1);
 }

 /* Perform some sanity checks on values
 */
 if (MaxConnections > MAX_MAX_CONNECTIONS) {
 printf("Maximum limit on number of buffers is %d\n", MAX_MAX_CONNECTIONS);
 terminate (1);
 }

 if (BufferSize > MAX_BUFFER_SIZE) {
 printf ("Maximum limit on buffer size is ");
 print_bytes (MAX_BUFFER_SIZE);
 printf ("\n");
 terminate (1);
 }

 /* If no transfer protocol(s) were specified, use all of them (use IPI-3

Appendix A - Programming Examples

A-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 * only if it was compiled in)
 */
 if (!src.Flags) {
 src.Flags = XFEROPT_IP | XFEROPT_SHMEM;

#if defined(IPI3_SUPPORT)
 src.Flags |= XFEROPT_IPI3;
#endif
 }
 src.Flags |= /* HOLD_RESOURCES | */ CONTROL_ADDR;

 /* If no hostname was specified, use the local default hostname for TCP
 * transfers
 */
 if (!HostList) {
 HostList = (tcphost_t *) malloc (sizeof(*HostList));

 if (gethostname (HostList[0].hostname,
 sizeof(HostList[0].hostname)) < 0) {
 perror ("gethostname");
 terminate (1);
 }

 HostList[0].hostEntry = gethostbyname (HostList[0].hostname);

 if (!(HostList[NumHosts].hostEntry)) {
 perror ("gethostbyname");
 terminate (1);
 }
 HostList[0].ipAddr =
 ((unsigned32)(HostList[0].hostEntry->h_addr_list[0]));
 ++NumHosts;
 }

 /* Set up signal handling
 */
 handle_signals();

 /* Allocate the array of transfer/connection information
 */
 Connections = (connection_info_t *) malloc (sizeof(Connections[0]) *
 MaxConnections);
 memset (Connections, 0, sizeof(Connections[0]) * MaxConnections);

 /* Pass the COS as a hint, if it was specified. If not specified, a
 * COS will be selected automatically based on file size. Even if
 * was give a COS as a hint, still provide file size info so a
 * proper segment size will be selected.
 */
 if (cos) {
 hints.COSId = cos;
 pris.COSIdPriority = REQUIRED_PRIORITY;
 }
 hints.MinFileSize = FileSize;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-19
Release 4.2, Revision 1

 hints.MaxFileSize = FileSize;
 pris.MinFileSizePriority = REQUIRED_PRIORITY;
 pris.MaxFileSizePriority = REQUIRED_PRIORITY;

 pthread_mutex_init (&GlobalVarMutex, pthread_mutexattr_default);

 /* Open the HPSS file (argv[0] points to the HPSS pathname)
 */
 FileDes=hpss_Open(argv[0], O_WRONLY | O_TRUNC | O_CREAT, 0666,
 &hints, &pris, NULL);

 if (FileDes < 0) {
 hpss_error ("hpss_Open", FileDes);
 terminate (FileDes);
 }

 if (VerboseOutput) {
 printf("File size is ");
 print_bytes64(FileSize);
 putchar('\n');
 }

 /* Create the local control socket which all Movers will
 * initially connect to
 */
 ControlSocket = socket (AF_INET, SOCK_STREAM, 0);

 if (ControlSocket == -1) {
 perror ("socket");
 terminate (1);
 }

 if (ControlOutput) {
 printf ("Control socket is socket %d\n", ControlSocket);
 }

 (void)memset (&controlSocketAddr, 0, sizeof(controlSocketAddr));
 controlSocketAddr.sin_family = AF_INET;
 controlSocketAddr.sin_addr.s_addr = INADDR_ANY;
 controlSocketAddr.sin_port = 0;

 if (bind (ControlSocket, (const struct sockaddr*)&controlSocketAddr,
 sizeof(controlSocketAddr)) == -1) {
 perror ("bind");
 terminate (1);
 }

 tmp = sizeof (controlSocketAddr);

 if (getsockname (ControlSocket,
 (struct sockaddr *)&controlSocketAddr,
 (size_t *)&tmp) == -1) {
 perror ("getsockname");

Appendix A - Programming Examples

A-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 terminate (1);
 }

 if (listen (ControlSocket, SOMAXCONN) == -1) {
 perror ("listen");
 terminate (1);
 }

 /* Start the thread to receive control connections from individual Movers
 */
 pthread_create (&manageConnectionsThread, pthread_attr_default,
 (pthread_startroutine_t) manage_mover_connections,
 (pthread_addr_t)NULL);
 pthread_yield();

 /* Set the source/sink length to the number of bytes we want
 */
 sink.Offset = src.Offset = cast64m(0);
 sink.Length = src.Length = FileSize;

 /* Define source and sink descriptors and the IOD
 */
 sink.SrcSinkAddr.Type = CLIENTFILE_ADDRESS;
 sink.SrcSinkAddr.Addr_u.ClientFileAddr.FileDes = FileDes;
 sink.SrcSinkAddr.Addr_u.ClientFileAddr.FileOffset = cast64m(0);

 src.SrcSinkAddr.Type = NET_ADDRESS;
 src.SrcSinkAddr.Addr_u.NetAddr.SockTransferID =cast64m (RequestId);
 src.SrcSinkAddr.Addr_u.NetAddr.SockAddr.addr =HostList[0].ipAddr;
 src.SrcSinkAddr.Addr_u.NetAddr.SockAddr.port =controlSocketAddr.sin_port;
 src.SrcSinkAddr.Addr_u.NetAddr.SockAddr.family=controlSocketAddr.sin_family;
 src.SrcSinkAddr.Addr_u.NetAddr.SockOffset =cast64m (0);

 iod.Function = IOD_WRITE;
 iod.RequestID = RequestId;
 iod.SrcDescLength = 1;
 iod.SinkDescLength = 1;
 iod.SrcDescList = &src;
 iod.SinkDescList = &sink;

 if (ControlOutput) {
 printf("Client request id is %d\n", RequestId);
 }

 TotalBytesWritten = cast64m(0);

 startTime = get_current_timestamp();
 TransferStatus = HPSS_E_NOERROR;

 if (ControlOutput) {
 printf ("Issuing hpss_WriteList call for ");
 print_bytes64 (FileSize);
 printf ("\n");

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-21
Release 4.2, Revision 1

 }

 memset (&ior, 0, sizeof(ior));

 status = hpss_WriteList (&iod, writeListFlags, &ior);

 if (status) {
 hpss_error ("hpss_WriteList", status);

 if (ior.Status != HPSS_E_NOERROR) {
 hpss_error ("IOR status", ior.Status);
 printf ("Returned flags is 0x%x, bytes moved is ", ior.Flags);
 print_bytes64 (TotalBytesWritten);
 putchar ('\n');
 terminate (1);
 }

 if (TransferStatus == HPSS_E_NOERROR) TransferStatus = status;
 }

 endTime = get_current_timestamp ();

 totalTime = diff_timestamps (startTime, endTime);

 /* Close the HPSS file
 */
 status = hpss_Close (FileDes);

 if (status < 0) {
 hpss_error ("hpss_Close", status);
 }

 /* Let's make sure that all data has actually been sent before we kill
 * any active transfer threads
 */
 pthread_mutex_lock (&GlobalVarMutex);

 if (neq64m (FileSize, TotalBytesWritten)) {

 struct timespec delay = { 1, 0 }; /* 1 second */

 printf("filesize is ");
 print_bytes64(FileSize);
 printf(", TotalBytesWritten is ");
 print_bytes64(TotalBytesWritten);
 printf("\n");

 pthread_mutex_unlock (&GlobalVarMutex);

 /* Wait for all transfer threads to complete before moving on
 */
 for (tmp=0, i=0; i < MaxConnections; i++) {

Appendix A - Programming Examples

A-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 pthread_mutex_lock (&GlobalVarMutex);

 while (Connections[i].active) {

 pthread_mutex_unlock (&GlobalVarMutex);

 if ((VerboseOutput || ControlOutput) && !tmp) {
 printf ("Waiting on thread %d to complete...\n", i+1);
 tmp = 1; /* only show the message once */
 }

 (void) pthread_delay_np (&delay);

 pthread_mutex_lock (&GlobalVarMutex);
 }
 pthread_mutex_unlock (&GlobalVarMutex);
 }
 }

 /* Print stats
 */
 if (!eq64m (TotalBytesWritten, cast64m(0))) {
 u_signed64 usecs64;
 unsigned32 throughput;

 usecs64 = add64m (mul64m (cast64m (totalTime.tv_sec), 1000000),
 cast64m (totalTime.tv_usec));

 throughput = cast32m (div2x64m (mul64m (TotalBytesWritten, 1000000),
 usecs64));

 if (WholeBytesOutput) {
 printf ("%ld\n", throughput);
 }
 else {
 print_bytes64 (TotalBytesWritten);
 printf(" successfully written in %d.%06d sec -> ",

 totalTime.tv_sec, totalTime.tv_usec);

 usecs64 = mul64m (cast64m (totalTime.tv_sec), 1000000);
 inc64m (usecs64, cast64m (totalTime.tv_usec));

 print_bytes_per_second (cast32m (div2x64m (mul64m (TotalBytesWritten,
 1000000), usecs64)));
 putchar('\n');
 }
 fflush (stdout);
 }
 pthread_mutex_unlock (&GlobalVarMutex);

 /* Now cancel the manage_mover_connections thread
 */
 (void)pthread_cancel (manageConnectionsThread);
 (void)pthread_join (manageConnectionsThread, &pthreadStatus);

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-23
Release 4.2, Revision 1

 (void)pthread_detach (&manageConnectionsThread);

 terminate (0);
}

/*==
 * Function:
 * manage_mover_connections - Accept socket connections from HPSS Movers &
 * spawn a new thread to handle each Mover
 * connection and data transfer
 * Return Values:
 * <none>
 ==/

void manage_mover_connections ()
{
 int moverSocketFd; /* New Mover socket file descriptor */
 int index; /* Counters */
 int tmp; /* Temporary variable */

 struct sockaddr_in socketAddr;

 /* Loop until this thread is cancelled
 */
 for (;;) {

 tmp = sizeof(socketAddr);

 while ((moverSocketFd =
 accept (ControlSocket, (struct sockaddr *)&socketAddr,
 (size_t *)&tmp)) < 0) {

 if ((errno != EINTR) && (errno != EAGAIN)) {
 perror ("accept");
 TransferStatus = errno;
 break;
 }

 } /* end while */

 if (moverSocketFd < 0) break;

 if (ControlOutput) {
 printf ("Mover control connection accepted on control socket %d\n",
 moverSocketFd);
 }

 /* Find a connection/transfer thread that is free to accept this
 * connection. If one is not free, sleep for a bit
 * and try again.
 */
 do {

Appendix A - Programming Examples

A-24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 pthread_mutex_lock (&GlobalVarMutex);

 for (index = 0; index < MaxConnections; index++) {

 if (!Connections[index].active) {
 Connections[index].active = 1;
 Connections[index].controlSocketFd = moverSocketFd;
 break;
 }
 }
 pthread_mutex_unlock (&GlobalVarMutex);

 /* Sleep (without blocking the process) if no free buffer/thread
 * was found
 */
 if (index == MaxConnections) {
 struct timespec delay = { 0, 500000 };

 (void) pthread_delay_np (&delay);
 }

 } while (index == MaxConnections);

 socket_setoptions (moverSocketFd);

 /* Spawn a thread to handle this transfer request
 */
 pthread_create (&Connections[index].threadId, pthread_attr_default,
 (pthread_startroutine_t) transfer_routine,
 (pthread_addr_t) index);
 pthread_yield();

 } /* end for */

 return;
}

/*==
 * Function:
 * handle_signals - Routine to cause process to catch common signals and
 * gracefully terminate
 ==/

void handle_signals()
{
 pthread_t threadId; /* Signal thread id */

 sigemptyset (&SigMask);
 sigaddset (&SigMask, SIGHUP);
 sigaddset (&SigMask, SIGINT);
 sigaddset (&SigMask, SIGQUIT);
 sigaddset (&SigMask, SIGTERM);

 (void) sigprocmask (SIG_SETMASK, &SigMask, (sigset_t *)NULL);

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-25
Release 4.2, Revision 1

 /* Spawn a thread to catch signals
 */
 pthread_create (&threadId, pthread_attr_default,
 (pthread_startroutine_t) signal_thread,
 (pthread_addr_t) NULL);
 pthread_yield();
}

/*==
 * Function:
 * signal_thread - Thread to catch signals and gracefully terminate the
 * process by removing any allocated shared memory
 ==/

void signal_thread()
{
 int index;
 int status = sigwait (&SigMask);

 /* Step through the connections and for any that are active, delete the
 * shared memory segment if it exists
 */

 if (ControlOutput) printf("****** signal received ******\n");

 printf("index=%d, MaxConnections=%d\n",index,MaxConnections);

 for (index=0; index < MaxConnections; index++) {

 printf("Connections[%d].active=%d\n",index,Connections[index].active);
 printf("Connections[%d].shmId=%d\n",index,Connections[index].shmId);
 if (Connections[index].active && Connections[index].shmId != -1) {
 if (ControlOutput)
 printf("Deleting shared memory for thread %d\n", index+1);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 }
 }

 exit (status);
}

/*==
 * Function:
 * transfer_routine - Send data transfer using mover protocol
 *
 * Arguments:
 * index - Index into Connections array for this thread
 *
 * Return Values:
 * <none>
 ==/

void transfer_routine (int index)

Appendix A - Programming Examples

A-26 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

{
 int status, tmp; /* Return, temporary values */
 int transferListenSocket; /* Socket listen descriptors */
 int transferSocketFd; /* Transfer accept socket */
 struct sockaddr_in transferSocketAddr; /* Transfer socket address */
 int bytesSent;
 initiator_msg_t initMessage, initReply;
 initiator_ipaddr_t ipAddr; /* TCP socket address info */
 initiator_shmaddr_t shmAddr; /* Shared memory address info */
 completion_msg_t completionMessage;
 char *buffer; /* Transfer data buffer */

#if defined(IPI3_SUPPORT)
 int ipi3Descriptor, ipi3ThreadId;
 IPI3_INTERFACE_STRUCT ipi3Addr;
 initiator_ipi3addr_t ipiAddr;
#endif

 if (ControlOutput)
 printf("Thread %d - Started, using control socket %d\n", index+1,
 Connections[index].controlSocketFd);

 Connections[index].shmId = -1;
 transferListenSocket = transferSocketFd = -1;

 buffer = NULL;

 /* Loop until we reach a condition to discontinue talking with Mover
 */
 while (TransferStatus == HPSS_E_NOERROR) {

 /* Get the next transfer initiation message from the Mover.
 * HPSS_ECONN will be returned when the Mover is done.
 */
 status = mvrprot_recv_initmsg (Connections[index].controlSocketFd,
 &initMessage);

 if (ControlOutput)
 printf("Thread %d - mvrprot_recv_initsg returned %ld\n",
 index+1, status);

 if (status == HPSS_ECONN) {
 if (ControlOutput) printf("Connection closed by mover...\n");
 break; /* break out of the while loop */
 }
 else if (status != HPSS_E_NOERROR) {

 hpss_error ("mvrprot_recv_initmsg returned", status);
 TransferStatus = status;
 continue;
 }

 if (ControlOutput) {
 printf ("Thread %d - Mover ready to accept ", index+1);

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-27
Release 4.2, Revision 1

 print_bytes64 (initMessage.Length);
 printf (" at offset ");
 print_bytes64 (initMessage.Offset);
 printf (" via %s\n",
 initMessage.Type == NET_ADDRESS ? "TCP" :
 initMessage.Type == SHM_ADDRESS ? "SHM" : "IPI");
 }

 /* Tell the Mover we will send the address next
 */
 initReply.Flags = MVRPROT_COMP_REPLY | MVRPROT_ADDR_FOLLOWS;

 /* Let's agree to use the transfer protocol selected by the Mover and
 * let's accept the offset. However, the number of bytes the Mover can
 * transfer at one time is limited by our buffer size, so we tell the
 * Mover how much of the data he has offerred that we are willing to
 * accept.
 */
 initReply.Type = initMessage.Type;
 initReply.Offset = initMessage.Offset;

 if (gt64m (initMessage.Length, cast64m(BufferSize)))
 initReply.Length = cast64m(BufferSize);
 else
 initReply.Length = initMessage.Length;

 /* Send our response back to the Mover
 */
 status = mvrprot_send_initmsg (Connections[index].controlSocketFd,
 &initReply);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_initmsg", status);
 TransferStatus = status;
 continue;
 }

 /* Based on the type of transfer protocol, allocate memory, send address
 * information, and send the data to the HPSS Mover
 */
 switch (initMessage.Type) {

 case SHM_ADDRESS:

 /* If we have not already created the shared memory segment for this
 * thread, do it now
 */
 if (!buffer) {

 Connections[index].shmId = shmget (IPC_PRIVATE, BufferSize,
 S_IRWXU | S_IRWXG | S_IRWXO);
 if (Connections[index].shmId == -1) {
 perror ("shmget");
 TransferStatus = errno;

Appendix A - Programming Examples

A-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 continue;
 }

 buffer = shmat (Connections[index].shmId, NULL, 0);

 if (!buffer) {
 perror ("shmat");
 TransferStatus = errno;
 continue;
 }

 init_buf(buffer,BufferSize);

 memset (&shmAddr, 0, sizeof(shmAddr));
 shmAddr.Flags = 0;
 shmAddr.ShmAddr.Flags = 0;
 shmAddr.ShmAddr.ShmID = Connections[index].shmId;
 shmAddr.ShmAddr.ShmOffset = 0;
 }

 /* Tell the Mover what our shared memory address is
 */
 status = mvrprot_send_shmaddr (Connections[index].controlSocketFd,
 &shmAddr);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_shmaddr", status);
 TransferStatus = status;
 continue;
 }

 /* At this point, the Mover is taking the data out of shared memory
 * and we wait for the completion message
 */
 break;

 case NET_ADDRESS:

 /* The first time through, allocate the memory buffer and data transfer
 * socket
 */
 if (!buffer) {
 buffer = malloc (BufferSize);
 if (!buffer) {
 perror ("malloc");
 TransferStatus = errno;
 continue;
 }

 transferListenSocket = socket (AF_INET, SOCK_STREAM, 0);

 if (transferListenSocket == -1) {
 perror ("socket");
 TransferStatus = errno;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-29
Release 4.2, Revision 1

 continue;
 }

 if (ControlOutput) {
 printf ("Thread %d - Opened transfer listen socket %d\n", index+1,
 transferListenSocket);
 }

 (void)memset (&transferSocketAddr, 0, sizeof(transferSocketAddr));
 transferSocketAddr.sin_family = AF_INET;
 transferSocketAddr.sin_port = 0;

 /* Select the hostname (IP address) in a round-robin fashion
 */
 pthread_mutex_lock (&GlobalVarMutex);

 transferSocketAddr.sin_addr.s_addr = HostList[CurrentHost++].ipAddr;
 if (CurrentHost == NumHosts) CurrentHost = 0;

 pthread_mutex_unlock (&GlobalVarMutex);

 if (bind (transferListenSocket,
 (const struct sockaddr*)&transferSocketAddr,
 sizeof(transferSocketAddr)) == -1) {
 perror ("bind");
 return;
 }

 tmp = sizeof (transferSocketAddr);

 (void)memset (&transferSocketAddr, 0, sizeof(transferSocketAddr));

 if (getsockname (transferListenSocket,
 (struct sockaddr *)&transferSocketAddr,
 (size_t *)&tmp) == -1) {
 perror ("getsockname");
 TransferStatus = errno;
 continue;
 }

 if (listen (transferListenSocket, SOMAXCONN) == -1) {
 perror ("listen");
 TransferStatus = errno;
 continue;
 }

 if (VerboseOutput) {
 printf ("Thread %d - Using TCP network address %d.%d.%d.%d:%d\n",
 index+1,
 (transferSocketAddr.sin_addr.s_addr & 0xff000000) >> 24,
 (transferSocketAddr.sin_addr.s_addr & 0x00ff0000) >> 16,
 (transferSocketAddr.sin_addr.s_addr & 0x0000ff00) >> 8,
 (transferSocketAddr.sin_addr.s_addr & 0x000000ff),
 transferSocketAddr.sin_port);

Appendix A - Programming Examples

A-30 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 }

 memset (&ipAddr, 0, sizeof(ipAddr));
 ipAddr.IpAddr.SockTransferID = cast64m (RequestId);
 ipAddr.IpAddr.SockAddr.family = transferSocketAddr.sin_family;
 ipAddr.IpAddr.SockAddr.addr = transferSocketAddr.sin_addr.s_addr;
 ipAddr.IpAddr.SockAddr.port = transferSocketAddr.sin_port;
 ipAddr.IpAddr.SockOffset = cast64m (0);
 }

 /* Tell the Mover what socket to receive the data from
 */
 status = mvrprot_send_ipaddr (Connections[index].controlSocketFd,
 &ipAddr);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_ipaddr", status);
 TransferStatus = status;
 continue;
 }

 /* Wait for the new Mover socket connection, if you don't already
 * have one
 */
 if (transferSocketFd == -1) {

 tmp = sizeof(transferSocketAddr);

 while ((transferSocketFd =
 accept (transferListenSocket,
 (struct sockaddr *)&transferSocketAddr,
 (size_t *)&tmp)) < 0) {

 if ((errno != EINTR) && (errno != EAGAIN)) {
 TransferStatus = errno;
 break;
 }
 } /* end while */

 if (ControlOutput)
 printf("Thread %d - accept received, new transfer socket is %d\n",
 index+1, transferSocketFd);

 socket_setoptions (transferSocketFd);

 if (transferSocketFd < 0) continue;

 }

 /* Send the data to the Mover via our socket
 */
 status = mover_socket_send_requested_data (transferSocketFd,
 cast64m (RequestId),
 initMessage.Offset, buffer,

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-31
Release 4.2, Revision 1

 low32m (initReply.Length),
 &bytesSent, 1);
 if (status <= 0) {
 hpss_error ("mover_socket_send_requested_data", status);
 TransferStatus = status;
 }
 break;

#if defined(IPI3_SUPPORT)

 case IPI_ADDRESS:

 /* Allocate the memory buffer the first time through
 */
 if (!buffer) {
 buffer = malloc (BufferSize);
 if (!buffer) {
 perror ("malloc");
 TransferStatus = errno;
 continue;
 }

 /* Open the IPI3 device
 */
 Connections[index].ipiFd = ipi3_data3_open (&ipi3Addr);

 if (Connections[index].ipiFd < 0) {
 printf ("ipi3_data3_open returned %d\n", Connections[index].ipiFd);
 TransferStatus = Connections[index].ipiFd;
 Connections[index].ipiFd = 0;
 continue;
 }
 }

 status = ipi3_data3_write (Connections[index].ipiFd, &ipi3ThreadId,
 low32m (initReply.Length), buffer);

 if (status < 0) {
 hpss_error ("ipi3_data3_write", status);
 TransferStatus = status;
 continue;
 }

 ipiAddr.Flags = 0;
 ipiAddr.Ipi3Addr.IPI3TransferID = ipi3ThreadId;
 ipiAddr.Ipi3Addr.IPI3Offset = cast64m(0);
 ipiAddr.Ipi3Addr.IPI3Addr.Interface = ipi3Addr.interface;

 strcpy ((char*)ipiAddr.Ipi3Addr.IPI3Addr.Name,
 ipi3Addr.name);

 status = mvrprot_send_ipi3addr (Connections[index].controlSocketFd,
 &ipiAddr);

Appendix A - Programming Examples

A-32 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_ipi3addr", status);
 ipi3_data3_cancel (Connections[index].ipiFd);
 TransferStatus = status;
 continue;
 }

 status = ipi3_data3_complete (Connections[index].ipiFd, -1);

 if (status < 0) {
 hpss_error ("ipi3_data3_complete", status);
 TransferStatus = status;
 continue;
 }
 break;
#endif

 default:
 break;

 } /* end switch */

 /* Get a transfer completion message from the Mover
 */
 status = mvrprot_recv_compmsg (Connections[index].controlSocketFd,
 &completionMessage);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_recv_compmsg", status);
 TransferStatus = status;
 continue;
 }

 if (VerboseOutput) {
 printf ("Thread %d - ", index+1);

 print_bytes64 (completionMessage.BytesMoved);
 printf(" sent at offset ");
 print_bytes64 (initMessage.Offset);
 printf(" via ");

 switch (initMessage.Type) {
 case SHM_ADDRESS:
 printf ("SHM\n");
 break;
 case NET_ADDRESS:
 printf ("TCP\n");
 break;
 case IPI_ADDRESS:
 printf ("IPI\n");
 break;
 default:
 break;
 }

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-33
Release 4.2, Revision 1

 }

 pthread_mutex_lock (&GlobalVarMutex);
 inc64m (TotalBytesWritten, completionMessage.BytesMoved);
 if (ge64m(TotalBytesWritten,FileSize))
 {
 TransferStatus = 0;
 pthread_mutex_unlock(&GlobalVarMutex);
 break;
 }
 pthread_mutex_unlock (&GlobalVarMutex);

 } /* end while loop */

 if (ControlOutput) {
 printf("Closing down thread %d\n", index+1);
 }

 /* Clean up, based on the transfer protocol
 */
 switch (initMessage.Type) {

 case SHM_ADDRESS:

 /* Remove the shared memory segment if it got allocated
 */
 if (Connections[index].shmId != -1) {
 shmdt (buffer);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 Connections[index].shmId = -1;
 }
 break;

#if defined(IPI3_SUPPORT)

 case IPI_ADDRESS:

 (void) ipi3_data3_close (Connections[index].ipiFd);

 /* Free the buffer if it was allocated
 */
 if (buffer) (void) free(buffer);
 break;

#endif

 case NET_ADDRESS:
 default:

 /* Close down the TCP transfer socket if it got opened
 */
 if (transferSocketFd != -1) {
 (void) close (transferSocketFd);
 }

Appendix A - Programming Examples

A-34 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 /* Free the buffer if it was allocated
 */
 if (buffer) (void) free(buffer);

 break;

 } /* end switch */

 /* Close the control socket
 */
 (void) close (transferListenSocket);

 /* Close the control socket and mark this connection as not
 * active
 */
 pthread_mutex_lock (&GlobalVarMutex);

 (void) close (Connections[index].controlSocketFd);

 Connections[index].active = 0;

 pthread_mutex_unlock (&GlobalVarMutex);

 return;
}

/*==
 * Function:
 * socket_setoptions - Set socket options for a given socket descriptor by
 * trying to set the send/receive buffer size to SbMax.
 * If that fails, divide SbMax by 2 until a valid value
 * is found.
 *
 * Arguments:
 * socketFd Socket file descriptor
 *
 * Return Values:
 * <none>
 ==/

void socket_setoptions (int socketFd)
{
 int bufferSize;
 int one = 1;

 while (SbMax > HPSS_SOCKET_BUF_MIN) {

 if ((setsockopt (socketFd, SOL_SOCKET, SO_SNDBUF, &SbMax,
 sizeof(SbMax)) < 0) ||
 (setsockopt (socketFd, SOL_SOCKET, SO_RCVBUF, &SbMax,
 sizeof(SbMax)) < 0))
 {
 SbMax = SbMax / 2;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-35
Release 4.2, Revision 1

 continue;
 }

 if (ControlOutput) {
 printf("Setting socket %d send/receive buffer size to ", socketFd);
 print_bytes (SbMax);
 printf("\n");
 }
 break;
 }

 (void)setsockopt (socketFd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one));
 (void)setsockopt (socketFd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));

 return;
}

void init_buf(char *Buf,int Size)
{
 int cnt;
 char *bufptr;

 bufptr = Buf;
 for (cnt = 0; cnt < Size; cnt += 4)
 {
 *(int *)bufptr = cnt / 4;
 bufptr += 4;
 }
}

Example 4: Read List - Mover to Mover Protocol

This example is provided to illustrate use of the hpss_ReadList() function.

/*==
 *
 * Name:
 * readlist.c - Read an HPSS file in parallel using hpss_Readlist,
 * multiple data-receiving threads, and the mover protocol
 * routines, supporting TCP, IPI-3, and shared-memory data
 * transfers
 *
 * Disclaimer:
 * This software is provided "as is" and may be freely copied and
 * modified as desired.
 *
 * Usage:
 * readlist [-vct] [-n maxConnections] [-s bufferSize] [-h hostname]*
 * [-p tcp|shm|ipi]* [-o] [-x sbmax] <path>
 *
 * -v Prints verbose output

Appendix A - Programming Examples

A-36 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 * -c Prints low-level control information
 * -t Print transfer rate in whole bytes per second
 *
 * -n maxConnections
 * Maximum number of open Mover transfer connections
 * (default is DEFAULT_MAX_CONNECTIONS).
 *
 * -s bufferSize Buffer size used to receive data within each transfer
 * thread (default is defined by DEFAULT_BUFFER_SIZE).
 *
 * -h hostname
 * Specifies one or more hostnames associated with the
 * desired network interface(s) for TCP-based transfers
 * (default is network associated with default hostname).
 * If multiple hostnames are specified, each transfer
 * threads will be assigned one of the network interfaces
 * in a round-robin fashion.
 *
 * -p tcp|shm|ipi
 * By default, TCP and shared memory transfers are enabled
 * (as well as IPI-3 if the program is compiled for IPI
 * support). The -p option can be repeatedly used to
 * specify which transfer options to make available. For
 * example, to restrict transfers to TCP only, use
 * "-p tcp". To make both TCP and IPI-3 available as
 * options (but not shared memory), use "-p tcp -p ipi".
 *
 * -o Instructs HPSS to send data to this application in
 * sequential order.
 *
 * -x sbmax Sets the initial upper limit on the TCP socket
 * send/receive buffer sizes
 *
 * <path> The HPSS file to read. Relative pathnames are resolved
 * from the perspective of the user's home directory
 * within HPSS.
 *
 * Description:
 *
 * This program reads all data stored in an HPSS file named <path> using
 * parallel I/O via the hpss_ReadList API and HPSS Mover protocol
 * functions. The program negotiates with the corresponding HPSS Movers
 * to determine which transfer protocol to use. The application is
 * coded to handle TCP, IPI-3, and/or shared memory transfers.
 *
 * The -v option enables the user to see each transfer of data from a
 * Mover, the order the data is received, and what protocol is used. The
 * -c option shows control debug information.
 *
 * The -t argument can be used to output a throughput number that can be
 * more easily used by other programs, spreadsheets, etc.
 *
 * The -s argument defines the size of each memory buffer used to receive
 * data within each transfer thread. If not specified, a default value

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-37
Release 4.2, Revision 1

 * is used.
 *
 * The -n argument defines the maximum number of simultaneous connections
 * to HPSS Movers, which also corresponds to the number of memory buffers
 * used in receiving data in parallel. If not specified, a default value
 * is used. This program will create a contiguous shared-memory segment
 * to receive data, the size of which is <bufferSize> times
 * <maxConnections> (of which transfer protocol is selected).
 *
 * Since segments of an HPSS bitfile may be striped across multiple
 * devices (and Movers) and/or may reside at different levels in a
 * hierarchy, multiple buffers/threads can be used to receive data in
 * parallel from different Movers who are trying to send data
 * independently.
 *
 * The -h option is used to specify an alternate hostname interface(s) to
 * use for TCP-based data transfers.
 *
 * The -o option causes the HPSS_READ_SEQUENTIAL flag to be used in the
 * hpss_ReadList. This means that at any point in time, the next byte in
 * transfer order is being processed - not waiting for a byte later in
 * transfer order).
 *
 * This program must be compiled with the -DIPI3_SUPPORT option in order
 * to support IPI-3 data transfers and it must be executed on a machine
 * that support HIPPI and IPI-3.
 *
 * For best performance, the buffer size should match either the VV block
 * size or the Mover buffer size, whichever is less, and the maximum
 * number of connections should be equal to the total number of devices
 * the file is spread across.
 *
 * This program requires that the user already have DCE credentials prior
 * to invocation.
 *
 ==/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>

#include "hpss_api.h"
#include "u_signed64.h"
#include "mvr_protocol.h"

#include "support.h"

/* Define program default values */

Appendix A - Programming Examples

A-38 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

#define DEFAULT_BUFFER_SIZE (4*1048576)
#define DEFAULT_MAX_CONNECTIONS 32
#define DEFAULT_SOCKET_SBMAX (8*1048576)

/* Define maximum values for sanity checks */

#define MAX_BUFFER_SIZE (32*1048576)
#define MAX_MAX_CONNECTIONS 32

/* Define local function prototypes */

void manage_mover_connections ();
void transfer_routine (int socketDes);
void socket_setoptions (int socketFd);
void signal_thread ();
void handle_signals ();

/* Define a structure of information to track for each Mover transfer
 * connection/thread
 */
typedef struct {
 int active; /* Whether thread/connection is active */
 pthread_t threadId; /* Id of the transfer thread */
 int controlSocketFd; /* Control socket descriptor */
 int ipiFd; /* IPI-3 transfer file descriptor */
 int shmId; /* Shared memory segment id */
} connection_info_t;

/* Define global variables (globals start with capital letter)
 */
int RequestId; /* HPSS request id */
int TransferStatus; /* Overall status of the data transfer
 * (HPSS_E_NOERROR if ok) */
int FileDes; /* HPSS file descriptor */
int ControlSocket = 0; /* Central Mover connection socket */
sigset_t SigMask; /* Signal mask */

/* Define global variables associated with command-line options
 */
typedef struct {
 struct hostent *hostEntry;
 char hostname[128];
 unsigned long ipAddr;
} tcphost_t;

unsigned32 NumHosts; /* -h argument counter */
tcphost_t *HostList; /* -h argument (length is NumHosts) */
int VerboseOutput = 0; /* -v argument (0=off, 1=on) */
int ControlOutput = 0; /* -c argument (0=off, 1=on) */
int WholeBytesOutput = 0;/* -x argument (0=off, 1=on) */
unsigned32 MaxConnections; /* -n argument */
unsigned32 BufferSize; /* -s argument */
unsigned32 SbMax = DEFAULT_SOCKET_SBMAX; /* -x argument */

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-39
Release 4.2, Revision 1

/* The following global variables are protected by the mutex GlobalVarMutex
 */
pthread_mutex_t GlobalVarMutex;

connection_info_t *Connections; /* Array of connection thread info */

int CurrentHost = 0; /* Index into HostList for next TCP address */
u_signed64 TotalBytesRead; /* Actual bytes received from Movers */
u_signed64 GapBytes; /* Number of "gap" bytes within the file */

/*==
 * Function:
 * hpss_error - Print out info on an HPSS error condition
 *
 * Arguments:
 * function Name of the HPSS function that returned "status"
 * status HPSS error code
 *
 * Return Values:
 * <none>
 ==/

void hpss_error (char *function, signed32 status)
{
 fprintf (stderr,"%s (%ld): %s\n", function, status, status_string (status));
}

/*==
 * Function:
 * terminate - Gracefully terminate the process, closing resources
 * appropriately
 *
 * Arguments:
 * exitStatus Value used as the exit status
 *
 * Return Values:
 * This function terminates the process and therefore does not
 * return.
 ==/

void terminate (int exitStatus)
{
 int index;

 /* Close down the HPSS file if it is open
 */
 if (FileDes > 0) {
 if (ControlOutput) printf("Closing HPSS file descriptor %d\n", FileDes);
 (void)hpss_Close (FileDes);
 }

 /* Step through the connections and for any that are active, delete the
 * shared memory segment if it exists

Appendix A - Programming Examples

A-40 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 */
 for (index=0; index < MaxConnections; index++) {

 if (Connections[index].active && Connections[index].shmId != -1) {
 if (ControlOutput)
 printf("Deleting shared memory for thread %d\n", index+1);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 }
 }

 exit (exitStatus);
}

/*==
 * main
 ==/

main (int argc, char *argv[])
{
 int i, badUsage; /* Counters and flags */
 size_t tmp; /* Temporary variables */
 char *programName, *s;
 IOD_t iod; /* IOD passed to hpss_ReadList */
 IOR_t ior; /* IOR returned from hpss_ReadList */
 srcsinkdesc_t src, sink; /* IOD source/sink descriptors */
 struct sockaddr_in controlSocketAddr; /* control socket addresses */
 int readListFlags = 0; /* Flags on hpss_ReadList call */
 u_signed64 fileSize; /* Size of the HPSS file */
 u_signed64 bytesMoved; /* Bytes transferred, as returned from IOR
 */
 pthread_t manageConnectionsThread; /* Spawned thread id */
 pthread_addr_t pthreadStatus;
 signed32 status; /* HPSS return code/status */
 timestamp_t startTime, endTime, totalTime; /* various timestamps */

 totalTime.tv_sec = totalTime.tv_usec = 0;

 memset (&iod, 0, sizeof(iod));
 memset (&src, 0, sizeof(src));
 memset (&sink, 0, sizeof(sink));

 programName = argv[0];
 badUsage = 0;
 MaxConnections = DEFAULT_MAX_CONNECTIONS;
 BufferSize = DEFAULT_BUFFER_SIZE;
 sink.Flags = 0;

 /* Process the arguments
 */

 while (--argc > 0 && (*++argv)[0] == '-') {

 for (s = argv[0]+1; *s != '\0'; s++) {

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-41
Release 4.2, Revision 1

 switch (*s) {

 case 'v': /* for verbose output */
 VerboseOutput = 1;
 break;

 case 'c': /* for low-level control output */
 ControlOutput = 1;
 break;

 case 't': /* for printing whole byte throughput rate */
 WholeBytesOutput = 1;
 break;

 case 'o': /* to get data in parallel sequential order */
 readListFlags = HPSS_READ_SEQUENTIAL;
 break;

 case 'n': /* to specify max connections/no. buffers */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 MaxConnections = atoi((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 's': /* to specify buffer size */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 BufferSize = atobytes((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'x': /* to specify socket buffer sizes */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 SbMax = atobytes((++argv)[0]);
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'h': /* TCP hostname */
 if (argc > 1 && (*(argv+1))[0] != '-') {
 if (!HostList) {
 HostList = (tcphost_t *)malloc (sizeof(*HostList));
 }
 else {
 HostList = (tcphost_t *)realloc (HostList, sizeof(*HostList) *
 (NumHosts + 1));
 }

Appendix A - Programming Examples

A-42 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 strncpy (HostList[NumHosts].hostname, (++argv)[0],
 sizeof(HostList[NumHosts].hostname));

 /* Make sure it is a legitimate hostname */

 HostList[NumHosts].hostEntry =
 gethostbyname (HostList[NumHosts].hostname);

 if (!(HostList[NumHosts].hostEntry)) {
 fprintf (stderr, "Invalid hostname \"%s\"\n",
 HostList[NumHosts].hostname);
 perror ("gethostbyname");
 badUsage = 1;
 }
 else {
 HostList[NumHosts].ipAddr =
 ((unsigned32)(HostList[NumHosts].hostEntry->h_addr_list[0]));
 ++NumHosts;
 }

 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 case 'p': /* transfer protocol */
 if (argc > 1) {
 ++argv;

 if (!strcmp(argv[0], "tcp")) {
 sink.Flags |= XFEROPT_IP;
 }
 else if (!strcmp(argv[0], "ipi")) {
 sink.Flags |= XFEROPT_IPI3;
 }
 else if (!strcmp(argv[0], "shm")) {
 sink.Flags |= XFEROPT_SHMEM;
 }
 else {
 printf ("Invalid transfer protocol - use tcp, shm, or ipi\n");
 badUsage = 1;
 }
 argc -= 1;
 }
 else
 badUsage = 1;
 break;

 default:
 badUsage = 1;

 } /* end switch */

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-43
Release 4.2, Revision 1

 } /* end for */
 } /* end while */

 if (argc != 1) badUsage = 1;

 if (badUsage) {
 printf("Usage:\n\n");
 printf("%s [-vco] [-n maxConnections] [-s bufferSize] [-h hostname]*\n",
 programName);
 printf(" [-p tcp|shm|ipi]* [-x sbmax] <path>\n\n");
 printf("-v\n");
 printf("\tPrints verbose output.\n\n");
 printf("-c\n");
 printf("\tPrints low-level control information.\n\n");
 printf("-t\n");
 printf("\tPrints throughput rate in whole bytes.\n\n");
 printf("-o\n");
 printf("\tInstructs HPSS to send data to this application in ");
 printf("sequential parallel\n");
 printf("\torder.\n\n");
 printf("-n maxConnections\n");
 printf("\tMaximum number of concurrent transfer threads that are ");
 printf("available for\n");
 printf("\tcommunicating simultaneously with HPSS Movers. This ");
 printf("corresponds to the\n");
 printf("\tnumber of buffers allocated to receive HPSS data. Default ");
 printf("is %d.\n\n", DEFAULT_MAX_CONNECTIONS);
 printf("-s bufferSize\n");
 printf("\tBuffer size used to receive data within each transfer ");
 printf("thread. Values\n");
 printf("\tsuch as \"2mb\" can be specified. Default is ");
 print_bytes (DEFAULT_BUFFER_SIZE);
 printf(".\n\n");
 printf("-h hostname\n");
 printf("\tSpecifies one or more hostnames associated with the desired ");
 printf("network\n");
 printf("\tinterface(s) for TCP-based transfers (default is network ");
 printf("associated\n");
 printf("\twith default hostname). If multiple hostnames are ");
 printf("specified, each\n");
 printf("\ttransfer thread will be assigned one of the network ");
 printf("interfaces in a\n");
 printf("\tround-robin fashion.\n\n");
 printf("-p tcp|shm|ipi\n");
 printf("\tBy default, TCP and shared memory transfers are enabled ");
 printf("(as well as\n");
 printf("\tIPI-3 if the program is compiled for IPI support). The ");
 printf("-p option can\n");
 printf("\tbe repeatedly used to specify which transfer options to ");
 printf("make available.\n\n");
 printf("-x sbmax\n");
 printf("\tSets the initial upper limit on the TCP socket send/receive ");
 printf("buffer sizes\n");
 printf("\tDefault is ");

Appendix A - Programming Examples

A-44 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 print_bytes (SbMax);
 printf(".\n\n");
 printf("<path>\n");
 printf("\tThe HPSS file to read. Relative pathnames are resolved ");
 printf("from the\n");
 printf("\tperspective of the user's home directory within HPSS.\n");

 terminate (1);
 }

 /* Perform some sanity checks on values
 */
 if (MaxConnections > MAX_MAX_CONNECTIONS) {
 printf("Maximum limit on number of buffers is %d\n", MAX_MAX_CONNECTIONS);
 terminate (1);
 }

 if (BufferSize > MAX_BUFFER_SIZE) {
 printf ("Maximum limit on buffer size is ");
 print_bytes (MAX_BUFFER_SIZE);
 printf ("\n");
 terminate (1);
 }

 /* If no transfer protocol(s) were specified, use all of them (use IPI-3
 * only if it was compiled in)
 */
 if (!sink.Flags) {
 sink.Flags = XFEROPT_IP | XFEROPT_SHMEM;

#if defined(IPI3_SUPPORT)
 sink.Flags |= XFEROPT_IPI3;
#endif
 }
 sink.Flags |= CONTROL_ADDR; /* optionally add "| HOLD_RESOURCES"
 * to keep mover connections open until
 * entire transfer completes
 */

 /* If no hostname was specified, use the local default hostname for TCP
 * transfers
 */
 if (!HostList) {
 HostList = (tcphost_t *) malloc (sizeof(*HostList));

 if (gethostname (HostList[0].hostname,
 sizeof(HostList[0].hostname)) < 0) {
 perror ("gethostname");
 terminate (1);
 }

 HostList[0].hostEntry = gethostbyname (HostList[0].hostname);

 if (!(HostList[NumHosts].hostEntry)) {

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-45
Release 4.2, Revision 1

 perror ("gethostbyname");
 terminate (1);
 }
 HostList[0].ipAddr =
 ((unsigned32)(HostList[0].hostEntry->h_addr_list[0]));
 ++NumHosts;
 }

 /* Set up signal handling
 */
 handle_signals();

 /* Allocate the array of transfer/connection information
 */
 Connections = (connection_info_t *) malloc (sizeof(Connections[0]) *
 MaxConnections);

 memset (Connections, 0, sizeof(Connections[0]) * MaxConnections);

 pthread_mutex_init (&GlobalVarMutex, pthread_mutexattr_default);

 /* Open the HPSS file (argv[0] points to the HPSS pathname)
 */
 FileDes = hpss_Open (argv[0], O_RDONLY, 0777, NULL, NULL, NULL);

 if (FileDes < 0) {
 hpss_error ("hpss_Open", FileDes);
 terminate (FileDes);
 }

 /* Get the file size by lseek'ing to the end of the file and seeing what
 * position is returned. Then lseek back to the beginning of the file.
 */
 status = hpss_SetFileOffset (FileDes, cast64m(0), SEEK_END,
 HPSS_SET_OFFSET_FORWARD,
 &fileSize);
 if (status) {
 hpss_error ("hpss_SetFileOffset(end)", status);
 terminate (status);
 }

 if (VerboseOutput) {
 printf("File size is ");
 print_bytes64(fileSize);
 putchar('\n');
 }

 status = hpss_Lseek (FileDes, 0, SEEK_SET);

 if (status) {
 hpss_error ("hpss_Lseek(0)", status);
 terminate (status);
 }

Appendix A - Programming Examples

A-46 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 /* Create the local control socket which all Movers will initially connect
 * to
 */
 ControlSocket = socket (AF_INET, SOCK_STREAM, 0);

 if (ControlSocket == -1) {
 perror ("socket");
 terminate (1);
 }

 if (ControlOutput) {
 printf ("Control socket is socket %d\n", ControlSocket);
 }

 (void)memset (&controlSocketAddr, 0, sizeof(controlSocketAddr));
 controlSocketAddr.sin_family = AF_INET;
 controlSocketAddr.sin_addr.s_addr = INADDR_ANY;
 controlSocketAddr.sin_port = 0;

 if (bind (ControlSocket, (const struct sockaddr*)&controlSocketAddr,
 sizeof(controlSocketAddr)) == -1) {
 perror ("bind");
 terminate (1);
 }

 tmp = sizeof (controlSocketAddr);

 if (getsockname (ControlSocket,
 (struct sockaddr *)&controlSocketAddr,
 (size_t *)&tmp) == -1) {
 perror ("getsockname");
 terminate (1);
 }

 if (listen (ControlSocket, SOMAXCONN) == -1) {
 perror ("listen");
 terminate (1);
 }

 /* Start the thread to receive control connections from individual Movers
 */
 pthread_create (&manageConnectionsThread, pthread_attr_default,
 (pthread_startroutine_t) manage_mover_connections,
 (pthread_addr_t)NULL);
 pthread_yield();

 /* Define source and sink descriptors and the IOD
 */
 src.SrcSinkAddr.Type = CLIENTFILE_ADDRESS;
 src.SrcSinkAddr.Addr_u.ClientFileAddr.FileDes = FileDes;

 RequestId = getpid();

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-47
Release 4.2, Revision 1

 sink.SrcSinkAddr.Type = NET_ADDRESS;
 sink.SrcSinkAddr.Addr_u.NetAddr.SockTransferID = cast64m (RequestId);
 sink.SrcSinkAddr.Addr_u.NetAddr.SockAddr.addr = HostList[0].ipAddr;
 sink.SrcSinkAddr.Addr_u.NetAddr.SockOffset = cast64m (0);
 sink.SrcSinkAddr.Addr_u.NetAddr.SockAddr.port = controlSocketAddr.sin_port;
 sink.SrcSinkAddr.Addr_u.NetAddr.SockAddr.family=
 controlSocketAddr.sin_family;

 iod.Function = IOD_READ;
 iod.RequestID = RequestId;
 iod.SrcDescLength = 1;
 iod.SinkDescLength = 1;
 iod.SrcDescList = &src;
 iod.SinkDescList = &sink;

 if (ControlOutput) {
 printf("Client request id is %d\n", RequestId);
 }

 GapBytes = TotalBytesRead = bytesMoved = cast64m(0);

 startTime = get_current_timestamp();
 TransferStatus = HPSS_E_NOERROR;

 /* Loop as long as the total bytes moved plus all reported gaps are less
 * than the total size of the file AND no transfer error has been
 * encountered
 */
 while (lt64m(add64m(bytesMoved, GapBytes), fileSize) &&
 TransferStatus == HPSS_E_NOERROR) {

 /* Set the source/sink length to the number of bytes we want
 */
 src.Offset = sink.Offset = add64m(bytesMoved, GapBytes);
 src.Length = sink.Length = sub64m(fileSize, src.Offset);

 src.SrcSinkAddr.Addr_u.ClientFileAddr.FileOffset = src.Offset;

 if (ControlOutput) {
 printf ("Issuing hpss_ReadList call for ");
 print_bytes64 (sub64m(fileSize, add64m(bytesMoved, GapBytes)));
 printf ("\n");
 }

 memset (&ior, 0, sizeof(ior));

 status = hpss_ReadList (&iod, readListFlags, &ior);

 if (status) {
 hpss_error ("hpss_ReadList", status);

 if (ior.Status != HPSS_E_NOERROR) {
 hpss_error ("IOR status", ior.Status);
 printf ("Returned flags is 0x%x, bytes moved is ", ior.Flags);

Appendix A - Programming Examples

A-48 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 print_bytes64 (bytesMoved);
 putchar ('\n');
 terminate (1);
 }

 if (TransferStatus == HPSS_E_NOERROR) TransferStatus = status;
 }
 else {

 inc64m (bytesMoved, ior.SinkReplyList->BytesMoved);

 /* See if data transfer stopped at a gap (hole)
 */
 if (ior.Flags & IOR_GAPINFO_VALID) {

 if (VerboseOutput) {
 printf ("GAP encountered at offset ");
 print_bytes64
 (ior.ReqSpecReply->ReqReply_s.ReqReply_u.GapInfo.Offset);
 printf (", length ");
 print_bytes64
 (ior.ReqSpecReply->ReqReply_s.ReqReply_u.GapInfo.Length);
 putchar ('\n');
 }

 inc64m
 (GapBytes, ior.ReqSpecReply->ReqReply_s.ReqReply_u.GapInfo.Length);

 if (ior.ReqSpecReply) rpc_ss_client_free (ior.ReqSpecReply);
 }
 if (ior.SrcReplyList) rpc_ss_client_free (ior.SrcReplyList);
 if (ior.SinkReplyList) rpc_ss_client_free (ior.SinkReplyList);
 }

 } /* end while */

 endTime = get_current_timestamp ();

 totalTime = diff_timestamps (startTime, endTime);

 /* Close the HPSS file
 */
 status = hpss_Close (FileDes);

 if (status < 0) {
 hpss_error ("hpss_Close", status);
 }

 /* Let's make sure that all data has actually been received before we kill
 * any active transfer threads
 */
 pthread_mutex_lock (&GlobalVarMutex);

 if (neq64m (bytesMoved, TotalBytesRead)) {

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-49
Release 4.2, Revision 1

 struct timespec delay = { 1, 0 }; /* 1 second */

 printf("bytesMoved is ");
 print_bytes64(bytesMoved);
 printf(", TotalBytesRead is ");
 print_bytes64(TotalBytesRead);
 printf("\n");

 pthread_mutex_unlock (&GlobalVarMutex);

 /* Wait for all transfer threads to complete before moving on
 */
 for (tmp=0, i=0; i < MaxConnections; i++) {

 pthread_mutex_lock (&GlobalVarMutex);

 while (Connections[i].active) {

 pthread_mutex_unlock (&GlobalVarMutex);

 if ((VerboseOutput || ControlOutput) && !tmp) {
 printf ("Waiting on thread %d to complete...\n", i+1);
 tmp = 1; /* only show the message once */
 }

 (void) pthread_delay_np (&delay);

 pthread_mutex_lock (&GlobalVarMutex);
 }
 pthread_mutex_unlock (&GlobalVarMutex);
 }
 }

 /* Print stats
 */
 if (!eq64m (TotalBytesRead, cast64m(0))) {

 u_signed64 usecs64;
 unsigned32 throughput;

 usecs64 = add64m (mul64m (cast64m (totalTime.tv_sec), 1000000),
 cast64m (totalTime.tv_usec));

 throughput = cast32m (div2x64m (mul64m (TotalBytesRead, 1000000),
 usecs64));

 if (WholeBytesOutput) {
 printf ("%ld\n", throughput);
 }
 else {
 print_bytes64 (TotalBytesRead);
 printf(" successfully read in %d.%06d sec -> ",
 totalTime.tv_sec, totalTime.tv_usec);

Appendix A - Programming Examples

A-50 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 print_bytes_per_second (throughput);

 putchar('\n');

 if (neqz64m (GapBytes)) {
 printf ("...");
 print_bytes64 (GapBytes);
 printf (" within gaps\n");
 }
 }
 fflush (stdout);
 }
 pthread_mutex_unlock (&GlobalVarMutex);

 /* Now cancel the manage_mover_connections thread
 */
 (void)pthread_cancel (manageConnectionsThread);
 (void)pthread_join (manageConnectionsThread, &pthreadStatus);
 (void)pthread_detach (&manageConnectionsThread);

 terminate (0);
}

/*==
 * Function:
 * manage_mover_connections - Accept socket connections from HPSS Movers &
 * spawn a new thread to handle each Mover
 * connection and data transfer
 * Return Values:
 * <none>
 ==/

void manage_mover_connections ()
{
 int moverSocketFd; /* New Mover socket file descriptor */
 int index; /* Counters */
 int tmp; /* Temporary variable */

 struct sockaddr_in socketAddr;

 /* Loop until this thread is cancelled
 */
 for (;;) {

 tmp = sizeof(socketAddr);

 while ((moverSocketFd =
 accept (ControlSocket, (struct sockaddr *)&socketAddr,
 (size_t *)&tmp)) < 0) {

 if ((errno != EINTR) && (errno != EAGAIN)) {
 perror ("accept");

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-51
Release 4.2, Revision 1

 TransferStatus = errno;
 break;
 }

 } /* end while */

 if (moverSocketFd < 0) break;

 if (ControlOutput) {
 printf ("Mover control connection accepted on control socket %d\n",
 moverSocketFd);
 }

 /* Find a connection/transfer thread that is free to accept this
 * connection. If one is not free, sleep for a bit
 * and try again.
 */
 do {

 pthread_mutex_lock (&GlobalVarMutex);

 for (index = 0; index < MaxConnections; index++) {

 if (!Connections[index].active) {
 Connections[index].active = 1;
 Connections[index].controlSocketFd = moverSocketFd;
 break;
 }
 }
 pthread_mutex_unlock (&GlobalVarMutex);

 /* Sleep (without blocking the process) if no free buffer/thread
 * was found
 */
 if (index == MaxConnections) {
 struct timespec delay = { 0, 500000 };

 (void) pthread_delay_np (&delay);
 }

 } while (index == MaxConnections);

 socket_setoptions (moverSocketFd);

 /* Spawn a thread to handle this transfer request
 */
 pthread_create (&Connections[index].threadId, pthread_attr_default,
 (pthread_startroutine_t) transfer_routine,
 (pthread_addr_t) index);
 pthread_yield();

 } /* end for */

 return;

Appendix A - Programming Examples

A-52 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

}

/*==
 * Function:
 * handle_signals - Routine to cause process to catch common signals and
 * gracefully terminate
 ==/

void handle_signals()
{
 pthread_t threadId; /* Signal thread id */

 sigemptyset (&SigMask);
 sigaddset (&SigMask, SIGHUP);
 sigaddset (&SigMask, SIGINT);
 sigaddset (&SigMask, SIGQUIT);
 sigaddset (&SigMask, SIGTERM);

 (void) sigprocmask (SIG_SETMASK, &SigMask, (sigset_t *)NULL);

 /* Spawn a thread to catch signals
 */
 pthread_create (&threadId, pthread_attr_default,
 (pthread_startroutine_t) signal_thread,
 (pthread_addr_t) NULL);
 pthread_yield();
}

/*==
 * Function:
 * signal_thread - Thread to catch signals and gracefully terminate the
 * process by removing any allocated shared memory
 ==/

void signal_thread()
{
 int index;
 int status = sigwait (&SigMask);

 /* Step through the connections and for any that are active, delete the
 * shared memory segment if it exists
 */

 if (ControlOutput) printf("****** signal received ******\n");

 for (index=0; index < MaxConnections; index++) {

 if (Connections[index].active && Connections[index].shmId != -1) {
 if (ControlOutput)
 printf("Deleting shared memory for thread %d\n", index+1);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 }
 }

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-53
Release 4.2, Revision 1

 exit (status);
}

/*==
 * Function:
 * transfer_routine - Retrieve data transfer using mover protocol
 *
 * Arguments:
 * index - Index into Connections array for this thread
 *
 * Return Values:
 * <none>
 ==/

void transfer_routine (int index)
{
 int status, tmp; /* Return, temporary values */
 int transferListenSocket; /* Socket listen descriptors */
 int transferSocketFd; /* Transfer accept socket */
 struct sockaddr_in transferSocketAddr; /* Transfer socket address */
 int bytesReceived;
 initiator_msg_t initMessage, initReply;
 initiator_ipaddr_t ipAddr; /* TCP socket address info */
 initiator_shmaddr_t shmAddr; /* Shared memory address info */
 completion_msg_t completionMessage;
 char *buffer; /* Transfer data buffer */

#if defined(IPI3_SUPPORT)
 int ipi3Descriptor, ipi3ThreadId;
 IPI3_INTERFACE_STRUCT ipi3Addr;
 initiator_ipi3addr_t ipiAddr;
#endif

 if (ControlOutput)
 printf("Thread %d - Started, using control socket %d\n", index+1,
 Connections[index].controlSocketFd);

 Connections[index].shmId = -1;
 transferListenSocket = transferSocketFd = -1;

 buffer = NULL;

 /* Loop until we reach a condition to discontinue talking with Mover
 */
 while (TransferStatus == HPSS_E_NOERROR) {

 /* Get the next transfer initiation message from the Mover.
 * HPSS_ECONN will be returned when the Mover is done.
 */
 status = mvrprot_recv_initmsg (Connections[index].controlSocketFd,
 &initMessage);

 if (ControlOutput)
 printf("Thread %d - mvrprot_recv_initsg returned %ld\n",

Appendix A - Programming Examples

A-54 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 index+1, status);

 if (status == HPSS_ECONN) {
 break; /* break out of the while loop */
 }
 else if (status != HPSS_E_NOERROR) {

 hpss_error ("mvrprot_recv_initmsg returned", status);
 TransferStatus = status;
 continue;
 }

 if (ControlOutput) {
 printf ("Thread %d - Mover ready to send ", index+1);
 print_bytes64 (initMessage.Length);
 printf (" at offset ");
 print_bytes64 (initMessage.Offset);
 printf (" via %s\n",
 initMessage.Type == NET_ADDRESS ? "TCP" :
 initMessage.Type == SHM_ADDRESS ? "SHM" : "IPI");
 }

 /* Tell the Mover we will send the address next
 */
 initReply.Flags = MVRPROT_COMP_REPLY | MVRPROT_ADDR_FOLLOWS;

 /* Let's agree to use the transfer protocol selected by the Mover and
 * let's accept the offset. However, the number of bytes the Mover can
 * transfer at one time is limited by our buffer size, so we tell the
 * Mover how much of the data he has offerred that we are willing to
 * accept.
 */
 initReply.Type = initMessage.Type;
 initReply.Offset = initMessage.Offset;

 if (gt64m (initMessage.Length, cast64m(BufferSize)))
 initReply.Length = cast64m(BufferSize);
 else
 initReply.Length = initMessage.Length;

 /* Send our response back to the Mover
 */
 status = mvrprot_send_initmsg (Connections[index].controlSocketFd,
 &initReply);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_initmsg", status);
 TransferStatus = status;
 continue;
 }

 /* Based on the type of transfer protocol, allocate memory, send address
 * information, and receive the data from the HPSS Mover
 */

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-55
Release 4.2, Revision 1

 switch (initMessage.Type) {

 case SHM_ADDRESS:

 /* If we have not already created the shared memory segment for this
 * thread, do it now
 */
 if (!buffer) {

 Connections[index].shmId = shmget (IPC_PRIVATE, BufferSize,
 S_IRWXU | S_IRWXG | S_IRWXO);
 if (Connections[index].shmId == -1) {
 perror ("shmget");
 TransferStatus = errno;
 continue;
 }

 buffer = shmat (Connections[index].shmId, NULL, 0);

 if (!buffer) {
 perror ("shmat");
 TransferStatus = errno;
 continue;
 }

 memset (&shmAddr, 0, sizeof(shmAddr));
 shmAddr.Flags = HOLD_RESOURCES;
 shmAddr.ShmAddr.ShmID = Connections[index].shmId;
 }

 /* Tell the Mover what our shared memory address is
 */
 status = mvrprot_send_shmaddr (Connections[index].controlSocketFd,
 &shmAddr);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_shmaddr", status);
 TransferStatus = status;
 continue;
 }

 /* At this point, the Mover is moving the data into shared memory
 * and we wait for the completion message
 */
 break;

 case NET_ADDRESS:

 /* The first time through, allocate the memory buffer and data transfer
 * socket
 */
 if (!buffer) {
 buffer = malloc (BufferSize);
 if (!buffer) {

Appendix A - Programming Examples

A-56 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 perror ("malloc");
 TransferStatus = errno;
 continue;
 }

 transferListenSocket = socket (AF_INET, SOCK_STREAM, 0);

 if (transferListenSocket == -1) {
 perror ("socket");
 TransferStatus = errno;
 continue;
 }

 if (ControlOutput) {
 printf ("Thread %d - Opened transfer listen socket %d\n", index+1,
 transferListenSocket);
 }

 (void)memset (&transferSocketAddr, 0, sizeof(transferSocketAddr));
 transferSocketAddr.sin_family = AF_INET;
 transferSocketAddr.sin_port = 0;

 /* Select the hostname (IP address) in a round-robin fashion
 */
 pthread_mutex_lock (&GlobalVarMutex);

 transferSocketAddr.sin_addr.s_addr = HostList[CurrentHost++].ipAddr;
 if (CurrentHost == NumHosts) CurrentHost = 0;

 pthread_mutex_unlock (&GlobalVarMutex);

 if (bind (transferListenSocket,
 (const struct sockaddr*)&transferSocketAddr,
 sizeof(transferSocketAddr)) == -1) {
 perror ("bind");
 return;
 }

 tmp = sizeof (transferSocketAddr);

 (void)memset (&transferSocketAddr, 0, sizeof(transferSocketAddr));

 if (getsockname (transferListenSocket,
 (struct sockaddr *)&transferSocketAddr,
 (size_t *)&tmp) == -1) {
 perror ("getsockname");
 TransferStatus = errno;
 continue;
 }

 if (listen (transferListenSocket, SOMAXCONN) == -1) {
 perror ("listen");
 TransferStatus = errno;
 continue;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-57
Release 4.2, Revision 1

 }

 if (VerboseOutput) {
 printf ("Thread %d - Using TCP network address %d.%d.%d.%d:%d\n",
 index+1,
 (transferSocketAddr.sin_addr.s_addr & 0xff000000) >> 24,
 (transferSocketAddr.sin_addr.s_addr & 0x00ff0000) >> 16,
 (transferSocketAddr.sin_addr.s_addr & 0x0000ff00) >> 8,
 (transferSocketAddr.sin_addr.s_addr & 0x000000ff),
 transferSocketAddr.sin_port);
 }

 memset (&ipAddr, 0, sizeof(ipAddr));
 ipAddr.IpAddr.SockTransferID = cast64m (RequestId);
 ipAddr.IpAddr.SockAddr.family = transferSocketAddr.sin_family;
 ipAddr.IpAddr.SockAddr.addr = transferSocketAddr.sin_addr.s_addr;
 ipAddr.IpAddr.SockAddr.port = transferSocketAddr.sin_port;
 ipAddr.IpAddr.SockOffset = cast64m (0);
 }

 /* Tell the Mover what socket to send the data to
 */
 status = mvrprot_send_ipaddr (Connections[index].controlSocketFd,
 &ipAddr);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_ipaddr", status);
 TransferStatus = status;
 continue;
 }

 /* Wait for the new Mover socket connection, if you don't already
 * have one
 */
 if (transferSocketFd == -1) {

 tmp = sizeof(transferSocketAddr);

 while ((transferSocketFd =
 accept (transferListenSocket,
 (struct sockaddr *)&transferSocketAddr,
 (size_t *)&tmp)) < 0) {

 if ((errno != EINTR) && (errno != EAGAIN)) {
 TransferStatus = errno;
 break;
 }
 } /* end while */

 if (ControlOutput)
 printf("Thread %d - accept received, new transfer socket is %d\n",
 index+1, transferSocketFd);

 socket_setoptions (transferSocketFd);

Appendix A - Programming Examples

A-58 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 if (transferSocketFd < 0) continue;

 }

 /* Receive the data from the Mover via our socket
 */
 status = mover_socket_recv_data (transferSocketFd, cast64m (RequestId),
 initMessage.Offset, buffer,
 low32m (initReply.Length),
 &bytesReceived, 1);
 if (status <= 0) {
 hpss_error ("mover_socket_recv_data", status);
 TransferStatus = status;
 }
 break;

#if defined(IPI3_SUPPORT)

 case IPI_ADDRESS:

 /* Allocate the memory buffer the first time through
 */
 if (!buffer) {
 buffer = malloc (BufferSize);
 if (!buffer) {
 perror ("malloc");
 TransferStatus = errno;
 continue;
 }

 /* Open the IPI3 device
 */
 Connections[index].ipiFd = ipi3_data3_open (&ipi3Addr);

 if (Connections[index].ipiFd < 0) {
 printf ("ipi3_data3_open returned %d\n", Connections[index].ipiFd);
 TransferStatus = Connections[index].ipiFd;
 Connections[index].ipiFd = 0;
 continue;
 }
 }

 status = ipi3_data3_read (Connections[index].ipiFd, &ipi3ThreadId,
 low32m (initReply.Length), buffer);

 if (status < 0) {
 hpss_error ("ipi3_data3_read", status);
 TransferStatus = status;
 continue;
 }

 ipiAddr.Flags = 0;
 ipiAddr.Ipi3Addr.IPI3TransferID = ipi3ThreadId;

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-59
Release 4.2, Revision 1

 ipiAddr.Ipi3Addr.IPI3Offset = cast64m(0);
 ipiAddr.Ipi3Addr.IPI3Addr.Interface = ipi3Addr.interface;

 strcpy ((char*)ipiAddr.Ipi3Addr.IPI3Addr.Name,
 ipi3Addr.name);

 status = mvrprot_send_ipi3addr (Connections[index].controlSocketFd,
 &ipiAddr);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_send_ipi3addr", status);
 ipi3_data3_cancel (Connections[index].ipiFd);
 TransferStatus = status;
 continue;
 }

 status = ipi3_data3_complete (Connections[index].ipiFd, -1);

 if (status < 0) {
 hpss_error ("ipi3_data3_complete", status);
 TransferStatus = status;
 continue;
 }
 break;
#endif

 default:
 break;

 } /* end switch */

 /* Get a transfer completion message from the Mover
 */
 status = mvrprot_recv_compmsg (Connections[index].controlSocketFd,
 &completionMessage);

 if (status != HPSS_E_NOERROR) {
 hpss_error ("mvrprot_recv_compmsg", status);
 TransferStatus = status;
 continue;
 }

 if (VerboseOutput) {
 printf ("Thread %d - ", index+1);

 print_bytes64 (completionMessage.BytesMoved);
 printf(" received at offset ");
 print_bytes64 (initMessage.Offset);
 printf(" via ");

 switch (initMessage.Type) {
 case SHM_ADDRESS:
 printf ("SHM\n");
 break;

Appendix A - Programming Examples

A-60 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 case NET_ADDRESS:
 printf ("TCP\n");
 break;
 case IPI_ADDRESS:
 printf ("IPI\n");
 break;
 default:
 break;
 }
 }

 pthread_mutex_lock (&GlobalVarMutex);
 inc64m (TotalBytesRead, completionMessage.BytesMoved);
 pthread_mutex_unlock (&GlobalVarMutex);

 } /* end while loop */

 if (ControlOutput) {
 printf("Closing down thread %d\n", index+1);
 }

 /* Clean up, based on the transfer protocol
 */
 switch (initMessage.Type) {

 case SHM_ADDRESS:

 /* Remove the shared memory segment if it got allocated
 */
 if (Connections[index].shmId != -1) {
 shmdt (buffer);
 shmctl (Connections[index].shmId, IPC_RMID, (struct shmid_ds *)NULL);
 Connections[index].shmId = -1;
 }
 break;

#if defined(IPI3_SUPPORT)

 case IPI_ADDRESS:

 (void) ipi3_data3_close (Connections[index].ipiFd);

 /* Free the buffer if it was allocated
 */
 if (buffer) (void) free(buffer);
 break;

#endif

 case NET_ADDRESS:
 default:

 /* Close down the TCP transfer socket if it got opened
 */

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-61
Release 4.2, Revision 1

 if (transferSocketFd != -1) {
 (void) close (transferSocketFd);
 }

 /* Free the buffer if it was allocated
 */
 if (buffer) (void) free(buffer);

 break;

 } /* end switch */

 /* Close the control socket
 */
 (void) close (transferListenSocket);

 /* Close the control socket and mark this connection as not
 * active
 */
 pthread_mutex_lock (&GlobalVarMutex);

 (void) close (Connections[index].controlSocketFd);

 Connections[index].active = 0;

 pthread_mutex_unlock (&GlobalVarMutex);

 return;
}

/*==
 * Function:
 * socket_setoptions - Set socket options for a given socket descriptor by
 * trying to set the send/receive buffer size to SbMax.
 * If that fails, divide SbMax by 2 until a valid value
 * is found.
 *
 * Arguments:
 * socketFd Socket file descriptor
 *
 * Return Values:
 * <none>
 ==/

void socket_setoptions (int socketFd)
{
 int bufferSize;
 int one = 1;

 while (SbMax > HPSS_SOCKET_BUF_MIN) {

 if ((setsockopt (socketFd, SOL_SOCKET, SO_SNDBUF, &SbMax,
 sizeof(SbMax)) < 0) ||
 (setsockopt (socketFd, SOL_SOCKET, SO_RCVBUF, &SbMax,

Appendix A - Programming Examples

A-62 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 sizeof(SbMax)) < 0))
 {
 SbMax = SbMax / 2;
 continue;
 }

 if (ControlOutput) {
 printf("Setting socket %d send/receive buffer size to ", socketFd);
 print_bytes (SbMax);
 printf("\n");
 }
 break;
 }

 (void)setsockopt (socketFd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one));
 (void)setsockopt (socketFd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));

 return;
}

Example 5: Directory Operations

 This example demonstrates a simple application which calls HPSS directory functions. This program is

passed the following argument:

argv[1] directory name

/*==

 *

 * Name:

 * diropts.c - Tests directory operations for opening, reading, and

 * closing a directory.

 *

 * Description:

 * In this example, a starting directory is passed in argv[1]. This

 * code example will recursivlely list all directories and indicate the

 * type of object for each entry. For files, the Class of Service and

 * file size will be printed. For symbolic links, the pathname to

 * which the link points will be printed.

 *

 --/

#include <dirent.h>

#include "hpss_api.h"

/*===

 * print_indentation - Indent output based on an indentation level

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-63
Release 4.2, Revision 1

 ===/

void print_indentation (int indent_level)

{

 int i;

 for (i=0; i < indent_level; i++)

 printf (" ");

}

/*===

 * list_directory - Recursively list contents of a directory

 ===/

void list_directory (char *s, int indent_level)

{

 int rc, handle;

 struct dirent entry;

 char *path, *sympath;

 ns_Attrs_t *attrs;

 path = malloc (HPSS_MAX_PATH_NAME);

 attrs = (ns_Attrs_t *)malloc (sizeof(ns_Attrs_t));

 /* Open the directory

 */

 handle = hpss_Opendir (s);

 if (handle < 0) {

 printf ("Can't open \"%s\" (rc=%d)\n", s, handle);

 free (path);

 return;

 }

 /* Read all entries in the directory. If an entry

 * is a directory, recursively list its contents.

 */

 do {

 rc = hpss_Readdir (handle, &entry);

 /* At the end of the directory if entry.d_namelen

 * is zero (or if we get an error). Ignore "." and ".."

 * entries.

Appendix A - Programming Examples

A-64 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 */

 if (rc) {

 print_indentation (indent_level);

 printf ("==> hpss_Readdir returned %d <==\n", rc);

 }

 else if (entry.d_namlen && strcmp(entry.d_name,".")

 && strcmp(entry.d_name,"..")) {

 print_indentation (indent_level);

 printf ("%s", entry.d_name);

 /* Determine type of file

 */

 sprintf (path, "%s/%s", s, entry.d_name);

 rc = hpss_GetListAttrs (path, attrs);

 if (!rc) {

 switch (attrs->Type) {

 case DIRECTORY_OBJECT:

 printf (" (DIRECTORY)\n");

 list_directory (path, indent_level+1);

 break;

 case FILE_OBJECT:

 printf (" (FILE, COS %lu, ", attrs->ClassOfService);

 print_u_signed64 (attrs->FileSize);

 printf (" bytes)\n");

 break;

 case SYM_LINK_OBJECT:

 sympath = malloc(HPSS_MAX_PATH_NAME);

 rc = hpss_Readlink (path, sympath, HPSS_MAX_PATH_NAME);

 if (rc < 0)

 printf (" (SYM LINK, hpss_Readlink returned %d)\n",rc);

 else

 printf (" (SYM LINK to %s)\n", sympath);

 free(sympath);

 break;

 case HARD_LINK_OBJECT:

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-65
Release 4.2, Revision 1

 printf (" (HARD LINK, COS %lu, ", attrs->ClassOfService);

 print_u_signed64 (attrs->FileSize);

 printf (" bytes)\n");

 break;

 default:

 break;

 }

 }

 else {

 printf (" (FILE, hpss_GetListAttrs returned %d)\n", rc);

 }

 rc = 0; /* reset for test in while loop */

 }

 } while (!rc && entry.d_namlen);

 (void) hpss_Closedir (handle);

 free (path);

 return;

}

/*===

 * main

 ===/

main (int argc, char *argv[])

{

 printf ("%s (DIRECTORY)\n", argv[1]);

 list_directory (argv[1], 1);

 exit(0);

}

Example 6: Get and Set File Attributes

This example demonstrates a simple application which calls HPSS get and set attributes functions.

/==

 *

 * Name:

Appendix A - Programming Examples

A-66 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 * fileattrs.c - Tests the file get and set attributes functions.

 *

 * Description:

 * In this example, the attributes for a file will be retrieved and

 * printed. The comment fields and Class of Service attributes will be

 * changed. The attributes will then be retrieved and printed.

 *

 --/

#include "hpss_api.h"

#include "u_signed64.h"

void print_attrs (char *title, hpss_fileattr_t *attrs)

{

 printf ("\n%s\n\n", title);

 printf (" Current COS: %lu\n", attrs->BFSAttr.BfAttribMd.COSId);

 printf (" New COS: %lu\n", attrs->BFSAttr.BfAttribMd.NewCOSId);

 printf (" NS COS: %lu\n", attrs->NSAttr.ClassOfService);

 printf (" File size: ");

 print_u_signed64 (attrs->BFSAttr.BfAttribMd.DataLen);

 printf ("\n");

 printf (" Comment: %s\n", attrs->NSAttr.Comment);

 printf (" Current Clients: %ld\n\n", attrs->BFSAttr.OpenCount);

}

/*===

 * main

 ===/

main (int argc, char *argv[])

{

 int rc;

 hpss_fileattr_t attrs, modattrs;

 u_signed64 nsflags, bfsflags;

 /* Get initial file attributes

 */

 rc = hpss_FileGetAttributes ("/home/tyler/mhpcc.mail", &attrs);

 if (rc != 0) {

 printf ("hpss_FileGetAttributes returned %ld\n", rc);

 exit (1);

 }

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-67
Release 4.2, Revision 1

 print_attrs ("Initial attributes...", &attrs);

 bzero ((char*)&modattrs, sizeof(modattrs));

 /* Change the comment field attached to the file

 * (a Name Server attribute)

 */

 strncpy (modattrs.NSAttr.Comment,

 "Performance analysis output from 091796 run",

 HPSS_MAX_COMMENT_LENGTH);

 nsflags = orbit64m (cast64m(0), ATTRINDEX_COMMENT);

 /* Change the COS (a BFS attribute)

 */

 modattrs.BFSAttr.BfAttribMd.COSId = atol(argv[1]);

 bfsflags = orbit64m (cast64m(0), BFS_SET_COS_ID);

 rc = hpss_FileSetAttributes ("/home/tyler/mhpcc.mail",

 nsflags, bfsflags,

 &modattrs, &attrs);

 if (rc) {

 printf ("hpss_FileSetAttributes returned %d\n", rc);

 }

 else {

 rc = hpss_FileGetAttributes ("/home/tyler/mhpcc.mail", &attrs);

 if (rc != 0) {

 printf ("hpss_FileGetAttributes returned %ld\n", rc);

 exit (1);

 }

 print_attrs ("After changing comment and COS id...", &attrs);

 }

 exit (0);

}

Example 7: Link Operations

This example demonstrates a simple application which calls HPSS link functions.

Appendix A - Programming Examples

A-68 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

/*==

 *

 * Name:

 * links.c - Tests link operations on a file.

 *

 * Description:

 * In this example, a file is created and written to. A symbolic link

 * and hard link are created to the file. The HPSS stat and lstat

 * functions are called for each of the 3 files, and the status is

 * printed. The files are then deleted.

 *

 --/

#include "hpss_api.h"

/*===

 * stat_file

 ===/

void stat_file (char *path)

{

 int rc;

 struct stat buffer;

 rc = hpss_Stat (path, &buffer);

 if (rc < 0) {

 printf ("hpss_Stat on \"%s\" returned %d\n", path, rc);

 }

 else {

 printf ("hpss_Stat on \"%s\":\n", path);

 printf ("\t Size: %ld\n", buffer.st_size);

 printf ("\t Mode: %o\n", buffer.st_mode);

 printf ("\tNum of Links: %u\n\n", buffer.st_nlink);

 }

 return;

}

/*===

 * lstat_file

 ===/

void lstat_file (char *path)

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-69
Release 4.2, Revision 1

{

 int rc;

 struct stat buffer;

 rc = hpss_Lstat (path, &buffer);

 if (rc < 0) {

 printf ("hpss_Lstat on \"%s\" returned %d\n", path, rc);

 }

 else {

 printf ("hpss_Lstat on \"%s\":\n", path);

 printf ("\t Size: %ld\n", buffer.st_size);

 printf ("\t Mode: %o\n", buffer.st_mode);

 printf ("\tNum of Links: %u\n\n", buffer.st_nlink);

 }

 return;

}

/*==

 * main

 ==/

main (int argc, char *argv[])

{

 int fd, rc;

 ssize_t bytes_written;

 char buffer[1024];

 /* Delete the testfiles, in case they exist (ignore errors)

 */

 (void) hpss_Unlink ("testfile");

 (void) hpss_Unlink ("testfile.symlink");

 (void) hpss_Unlink ("testfile.hardlink");

 /* Create the base file and write 1024 bytes to it.

 */

 fd = hpss_Open ("testfile", O_CREAT | O_WRONLY, 0644,

 NULL, NULL, NULL);

 if (fd < 0) {

 printf ("hpss_Open returned %ld\n", fd);

 exit (1);

 }

Appendix A - Programming Examples

A-70 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 bytes_written = hpss_Write (fd, buffer, sizeof(buffer));

 (void) hpss_Close (fd);

 if (bytes_written != sizeof(buffer)) {

 printf ("hpss_Write returned %ld\n", bytes_written);

 exit (1);

 }

 /* Create symbolic link "testfile.symlink" that points

 * to "testfile"

 */

 rc = hpss_Symlink ("testfile.symlink", "testfile");

 if (rc != 0) {

 printf ("hpss_Symlink returned %ld\n", rc);

 exit (1);

 }

 /* Create hard link "testfile.hardlink" that points

 * to "testfile"

 */

 rc = hpss_Link ("testfile", "testfile.hardlink");

 if (rc != 0) {

 printf ("hpss_Link returned %ld\n", rc);

 exit (1);

 }

 /* Now call hpss_Stat on each file

 */

 stat_file ("testfile");

 stat_file ("testfile.symlink");

 stat_file ("testfile.hardlink");

 printf("--------------------\n");

 /* Now call hpss_Lstat on each file

 */

 lstat_file ("testfile");

 lstat_file ("testfile.symlink");

 lstat_file ("testfile.hardlink");

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-71
Release 4.2, Revision 1

 /* Delete test files (ignore errors)

 */

 (void) hpss_Unlink ("testfile");

 (void) hpss_Unlink ("testfile.symlink");

 (void) hpss_Unlink ("testfile.hardlink");

 exit (0);

}

Example 8: Get File System Information for a Class of Service

This example demonstrates a simple application which calls HPSS functions to get file system information

for a specified Class of Service. This program is passed the following argument:

argv[1] Class of Service id

/*==

 *

 * Name:

 * statfs.c - Tests the capability to get file system information for

 * a particular Class of Service.

 *

 * Description:

 * In this example, a Class of Service is passed in argv[1]. The total

 * space, used space, and free space statistics are printed.

 *

 --/

#include "hpss_api.h"

#include "u_signed64.h"

main (int argc, char *argv[])

{

 int rc;

 struct statfs stats;

 u_signed64 total_space, used_space, free_space;

 rc = hpss_Statfs (atol(argv[1]), &stats);

 if (!rc) {

 total_space = mul64m (cast64m(stats.f_blocks),

 (unsigned32)stats.f_bsize);

Appendix A - Programming Examples

A-72 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

 free_space = mul64m (cast64m(stats.f_bfree),

 (unsigned32)stats.f_bsize);

 used_space = sub64m (total_space, free_space);

 printf ("COS %d Stats:\n");

 printf (" Total Bytes: ");

 print_u_signed64 (total_space);

 printf ("\n Bytes Used: ");

 print_u_signed64 (used_space);

 printf ("\n Bytes Free: ");

 print_u_signed64 (free_space);

 printf ("\n");

 /*

 printf ("Blocksize: %ld\n", stats.f_bsize);

 printf ("Blocks: %ld\n", stats.f_blocks);

 printf ("Free Blocks: %ld\n", stats.f_bfree);

 printf ("Files: %ld\n", stats.f_files);

 printf ("Free files: %ld\n", stats.f_ffree);

 printf ("Fsize: %ld\n", stats.f_fsize);

 printf ("Fname: %s\n", stats.f_fname);

 */

 }

}

Example 9: Get and Set the Client API Library Configuration

This example demonstrates a simple application which calls HPSS functions to get and set Client API con-

figuration settings.

/*==

 *

 * Name:

 * api_config.c - Tests the capability to get and set configuration

 * settings associated with the Client API library.

 *

 * Description:

 * In this example, the current Client API Library configuration settings

 * are retrieved and printed. The transfer type and host name are then

 * changed. The configuration settings are then retrieved and printed

 * to show the new values.

 *

 --/

Appendix A - Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 A-73
Release 4.2, Revision 1

#include "hpss_api.h"

#include "api_internal.h"

/*===

 * print_api_config

 ===/

void print_api_config (api_config_t *config)

{

 printf ("Flags: %lx\n", config->Flags);

 printf ("DebugValue: %ld\n", config->DebugValue);

 printf ("TransferType: ");

 switch (config->TransferType) {

 case API_TRANSFER_TCP:

 printf("TCP\n");

 break;

 case API_TRANSFER_IPI3:

 printf("IPI3\n");

 break;

 default:

 break;

 }

 printf ("NumRetries: %ld\n", config->NumRetries);

 printf ("MaxConnections: %ld\n", config->MaxConnections);

 printf ("ServerName: %s\n", config->ServerName);

 printf ("HPNSServiceName: %s\n", config->HPNSServiceName);

 printf ("BFSServiceName: %s\n", config->BFSServiceName);

 printf ("PrincipalName: %s\n", config->PrincipalName);

 printf ("KeytabPath: %s\n", config->KeytabPath);

 printf ("DebugPath: %s\n", config->DebugPath);

 printf ("HostName: %s\n", config->HostName);

 return;

}

/*==

 * main

 ==/

main (int argc, char *argv[])

Appendix A - Programming Examples

A-74 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

{

 long rc;

 api_config_t config;

 rc = hpss_GetConfiguration (&config);

 if (!rc) {

 print_api_config(&config);

 printf ("\nNow setting xfer to IPI3 and host name\n");

 strcpy (config.HostName, "hpss-f");

 config.TransferType = API_TRANSFER_IPI3;

 rc = hpss_SetConfiguration (&config);

 if (!rc)

 rc = hpss_GetConfiguration (&config);

 if (!rc)

 print_api_config(&config);

 else

 printf("hpss_SetConfiguration returned %ld\n", rc);

 }

}

Appendix B - Makefile Example

HPSS Programmer’s Reference, Vol. 1 December 2000 B-1
Release 4.2, Revision 1

Appendix B - Makefile Example

The following makefiles give examples of how HPSS Client API applications should be built on all the dif-

ferent supported platforms. The example is in the form of a makefile system that was designed to allow

the user to supply the platform name as an argument to the make utility. The example consists of a main

makefile and several include makefiles that contain the platform specific compiler directives. The header

of the main makefile demonstrates how the multi-platform make is invoked.

Multi-Platform Makefile Example

Main Makefile:
#==
Makefile -

This is an example makefile that can be used for building an HPSS

client API application on a number of different platforms. The client

program (‘client_program’) is built by running the make utility in

the following manner:

#

$ make PLATFORM=<platform> all

#

Where platform is the name of the platform that the client

application is targeted for..

#

The following platform files are supplied with this example:

aix42-43.mk - AIX 4.2 and 4.3 systems

aix42-nodce.mk - Non-DCE AIX 4.2 systems

aix43-nodce.mk - Non-DCE AIX 4.3 systems

solaris26.mk - Solaris 2.6 systems

solaris26-nodce.mk - Non-DCE Solaris 2.6 systems

irix64-nodce.mk - Non-DCE IRIX 6.4 systems

#

#==

include $(PLATFORM).mk

INCLUDES=-I. -I$(PLATFORM_ROOT_DIR)/include \

 -I$(PLATFORM_ROOT_DIR)/include/dmapi/dmg

LIBS=$(PLATFORM_ROOT_DIR)/lib/libhpss.a $(PLATFORM_LIBS)

CFLAGS=$(PLATFORM_CFLAGS) $(INCLUDES) $(PLATFORM_INCLUDES)

Appendix B - Makefile Example

B-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

LDFLAGS=$(PLATFORM_LDFLAGS)

CC=$(PLATFORM_CC)

.c.o:;@echo “ Compiling $< ...”

$(CC) $(CFLAGS) -c $<

PROGRAM=client_program

all: $(PROGRAM)

$(PROGRAM):$$@.o

@echo “ Linking $@ ...”

@$(CC) $(LDFLAGS) -o $@ $@.o $(LIBS)

clean:;

@echo “ Removing $@ ...”

@rm -f $(PROGRAM) $(PROGRAM).o

Include Makefile for AIX 4.2 and 4.3:
#==

aix42-43.mk - AIX 4.2 and 4.3 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss

PLATFORM_CC= xlc_r4

PLATFORM_LIBS=-ldce -lEncSfs -lEncina

PLATFORM_INCLUDES=-I/usr/lpp/encina/include

PLATFORM_CFLAGS= \

-D_THREAD_SAFE -D_AIX32_THREADS=1 -D_AES_SOURCE \

-D_AIX41 -D_AIX -D_AIX32 -D_IBMR2 \

-I/usr/include/dce

Include Makefile for Non-DCE AIX 4.2:
#==

aix42-nodce.mk - Non-DCE AIX 4.2 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss_nodce

Appendix B - Makefile Example

HPSS Programmer’s Reference, Vol. 1 December 2000 B-3
Release 4.2, Revision 1

PLATFORM_CC= xlc_r

PLATFORM_LIBS= -lpthreads

PLATFORM_CFLAGS= \

-DNO_DCE -DIDLBASE_H -Dnbase_v0_0_included \

-Dhpss_idl_types_v0_0_included -DTHREADS_ENABLED \

-DTHREAD_SAFE -D_AIX -D_IBMR2

Include Makefile for Non-DCE AIX 4.3:
#==

aix43-nodce.mk - Non-DCE AIX 4.3 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss_nodce

PLATFORM_CC= xlc_r7

PLATFORM_LIBS= -lpthreads

PLATFORM_CFLAGS= \

-DNO_DCE -DIDLBASE_H -Dnbase_v0_0_included \

-Dhpss_idl_types_v0_0_included -DTHREADS_ENABLED \

-DTHREAD_SAFE -D_AIX -D_IBMR2

Include Makefile for Non-DCE Solaris 2.6:
#==

solaris26-nodce.mk - Non-DCE Solaris 2.6 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss4112_sun_ndc

PLATFORM_CC= ucbcc -mt -v -D_THREAD_SAFE -z muldefs

PLATFORM_LIBS= -lpthread -lnsl -lxnet -lsocket

PLATFORM_CFLAGS= \

-DNO_DCE -DIDLBASE_H -Dnbase_v0_0_included \

-Dhpss_idl_types_v0_0_included -DTHREADS_ENABLED \

-DTHREAD_SAFE -D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED=1 \

 -D__EXTENSIONS__

Include Makefile for Solaris 2.6:
#==

Appendix B - Makefile Example

B-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

solaris26.mk - Solaris 2.6 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss

PLATFORM_CC= ucbcc -mt -v -D_THREAD_SAFE -I/usr/include/dce -z muldefs

PLATFORM_LIBS= -lnsl -lxnet -lsocket -ldce -lEncina

PLATFORM_INCLUDES= -I/opt/encina/include

PLATFORM_CFLAGS= \

-D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED=1 -D__EXTENSIONS__

Include Makefile for Non-DCE IRIX 6.4:
#==

irix64-nodce.mk - Non-DCE IRIX 6.4 systems

#==

PLATFORM_ROOT_DIR= /opt/hpss

PLATFORM_CC= cc

PLATFORM_LIBS= -lpthread

PLATFORM_CFLAGS= \

-DNO_DCE -DIDLBASE_H -Dnbase_v0_0_included \

-Dhpss_idl_types_v0_0_included -DTHREADS_ENABLED \

-DTHREAD_SAFE -mips4 -woff 1171,1116,1233,1047,1183,1204,1110

Appendix C - Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 C-1
Release 4.2, Revision 1

Appendix C - Notes

This section provides example IOD scenarios.

Usage of IOD/IOR

The IOD is designed to allow lists of source and sink descriptors to accommodate random data access

within a single request. For large data transfers, these lists may be extremely long. The stripeaddress
structure is intended to allow a shorthand notation to be used for describing data that is striped across a

number of data addresses. Currently, these addresses will be either device addresses or network (IP or IPI-

3) addresses.

The stripeaddress structure defines the amount of contiguous data that is written to each element in a

stripe group (the BlockSize field), the number of elements in the stripe group (the StripeWidth field), and

addressing information describing the elements of the stripe group (the AddrListLength and StripeAddrL-
ist fields).

The addressing information will be used in two ways. The first is by the initiator of a request, to specify

the addressing information for each element in the stripe group. This information will then be passed to

the responder who will use that information, along with the block size and stripe group width, to deter-

mine which element to contact for each piece of the transfer. In this case, the AddrListLength field will be

equal to the StripeWidth field. The second way in which the addressing will be used is by the responding

Storage Server to describe to a Mover the part of the transfer for which it is responsible. The block size and

stripe group width information (along with the offset in the source/sink descriptor) allows the Mover to

calculate for which parts of the overall transfer it has responsibility. In this case, the AddrListLength field

will be equal to 1 (one).

As an example, consider a 100 MB read request from a client which will stripe the data across 2 I/O nodes,

with a stripe block size of 4 MB. The I/O nodes will be NodeA and NodeB; the file in question Bfid1, at off-

set 0. The client would build an IOD which would look like:

IOD:

RequestID:Req1

Function: READ

SrcDescLength:1

SinkDescLength:1

SrcDescList:

0:

Offset: 0

Length:100 MB

SrcSinkAddress:

Type: FILEADDRESS

FileAddr:

BitfileID:Bfid1

BitfileOffset:0

Appendix C - Notes

C-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

SinkDescList:

0:

Offset:0

Length:100 MB

SrcSinkAddress:

Type: STRIPEADDRESS

StripeAddr:

BlockSize:4MB

StripeWidth:2

AddrListLength:2

StripeAddrList:

0:

Type:NETADDRESS

NetAddr:

SockTransferID:<transfer id>

SockAddr:<addr for NodeA>

SockOffset:0

1:

Type:NETADDRESS

NetAddr:

SockTransferID:<transfer id>

SockAddr:<addr for NodeB>

SockOffset:0

The client sends the IOD to the Bitfile Server. The Bitfile Server maps the bitfile addressing information

into logical segment information. For simplicity, assume that the data falls in one logical segment (an

example of splitting the source descriptor will come when we get down to the physical volume addresses,

below). The 100 MB is stored in Lseg1, beginning at offset 0. The update IOD would look like:

IOD:

RequestID: Req1

Function: READ

SrcDescLength: 1

SinkDescLength: 1

SrcDescList:

0:

Offset: 0

Length: 100 MB

SrcSinkAddr:

Type: LSEGADDRESS

LsegAddr:

LSegID:Lseg1

LSegOffset:0

Appendix C - Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 C-3
Release 4.2, Revision 1

SinkDescList:
<Same as SinkDescList received from Client>

The Bitfile Server sends the IOD on to the Storage Server. The Storage Server maps the logical segment

information in the source descriptor into virtual volume addressing information. The data is stored on vir-

tual volume Vvol 1, beginning at offset 0. The updated source descriptor would look like:

SrcDescList:

0:

Offset: 0

Length: 100 MB

SrcSinkAddr:

Type: VVOLADDRESS

VVolAddr:

VVolID: Vvol1

VVolOffset: 0

The storage server then maps the virtual volume information into physical volume addressing informa-

tion. Assume Vvol1 is striped across 3 physical volumes: PVol1, PVol2 and PVol3; each beginning at offset

64 KB (which could be the first addressable by after a volume label on tape), with stripe block size 1MB.

The source descriptor would then look like:

SrcDescList:

0:

Offset: 0

Length: 100 MB

SrcSinkAddr:

Type: STRIPEADDRESS

StripeAddr:

BlockSize: 1 MB

StripeWidth: 3

AddrListLength: 3

StripeAddrList:

0:

Type:PVOLADDRESS

PVolAddr:

PVolName: PVol1

PVolOffset: 64 KB

1:

Type:PVOLADDRESS

PVolAddr:

PVolName: PVol2

PVolOffset: 64 KB

2:

Type:PVOLADDRESS

PVolAddr:

Appendix C - Notes

C-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

PVolName: PVol3

PVolOffset: 64 KB

The Storage Server would then, after mounting removable media, map the physical volume information

into device addressing information. Assume the physical volumes are mounted on devices Dev1, Dev2,
and Dev3, respectively and the position for each device is 64KB from the beginning of the tape. The Mov-

ers associated with the three devices are Mvr1, Mvr2, and Mvr3, respectively. An IOD would be built for

each Mover, every field would be the same as in the IOD received by the storage server with the exception

of the SrcDescLength and the SrcDescList. Note that the SrcDescLength field may be the same as was

passed to the Storage Server or it may be different (e.g., the Storage Server may include an extra source

descriptor to one or more of the Movers if the request does not start on a stripe boundary, so that the

remaining descriptor(s) can refer to a stripe aligned piece of data). The source descriptors would look like:

For Mvr1:

SrcDescLength: 1

SrcDescList:

0:

Offset: 0

Length: 34 MB

SrcSinkAddr:

Type: STRIPEADDRESS

StripeAddr:

BlockSize: 1 MB

StripeWidth: 3

AddrListLength: 1

StripeAddrList:

0:

Type: DEVADDRESS

DevAddr:

DeviceID:Dev1

DevicePosition:

Whence: 0

Granularity:bytes

Offset: 64KB

AbsolutePosition:0

For Mvr2:

SrcDescLength: 1

SrcDescList:

0:

Offset: 1 MB

Length: 3 MB

SrcSinkAddr:

Type: STRIPEADDRESS

StripeAddr:

BlockSize: 1 MB

Appendix C - Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 C-5
Release 4.2, Revision 1

StripeWidth: 3

AddrListLength: 1

StripeAddrList:

0:

Type: DEVADDRESS

DevAddr:

DeviceID: Dev2

DevicePosition:

Whence: 0

Granularity:bytes

Offset: 64KB

AbsolutePosition:0

For Mvr3:

SrcDescLength: 1

SrcDescList:

0:

Offset: 2 MB

Length: 33 MB

SrcSinkAddr:

Type: STRIPEADDRESS

StripeAddr:

BlockSize: 1 MB

StripeWidth: 3

AddrListLength: 1

StripeAddrList:

0:

Type: DEVADDRESS

DevAddr:

DeviceID: Dev3

DevicePosition:

Whence: 0

Granularity:bytes

Offset: 64KB

AbsolutePosition:0

Given the information in the source descriptor describing the part of the transfer for which it is responsi-

ble, the Mover uses the Offset field in SrcDescList[0] to determine the offset into the transfer into which its

part of the data begins, and uses the BlockSize and StripeWidth fields in StripeAddr to determine the

stride at which the blocks are allocated to it - e.g., Mvr1 begins at offset 1 MB into the transfer and then is

responsible to 1 MB blocks with a 3 MB stride (1 MB BlockSize * 3 StripeWidth). The Mover uses the infor-

mation contained in the sink descriptor to perform a similar calculation to determine which client Mover

to contact and what the format of the parallel data tag should be for the appropriate part of the transfer.

Each Mover then builds an IOR to return status to the Storage Server. Assuming the data transfer com-

Appendix C - Notes

C-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

pleted successfully, the IORs would look like:

For Mvr1:

RequestID:x

Flags: COMPLETED

Status: 0

DevSpecReply: NULL

SrcReplyLength: 1

SinkReplyLength: 1

SrcReplyList:

0:

Flags: COMPLETED | POSITIONVALID

Status: 0

BytesMoved: 34 MB

Position:

Whence: 0

Granularity: Bytes

Offset: 64 KB

AbsolutePosition:0

SinkReplyList:

0:

Flags: COMPLETED

Status: 0

BytesMoved: 34 MB

For Mvr2:

RequestID: x

Flags: COMPLETED

Status: 0

DevSpecReply: NULL

SrcReplyLength: 1

SinkReplyLength: 1

SrcReplyList:

0:

Flags: COMPLETED | POSITIONVALID

Status: 0

BytesMoved: 33 MB

Position:

Whence: 0

Granularity: Bytes

Offset: 64 KB

AbsolutePosition:0

Appendix C - Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 C-7
Release 4.2, Revision 1

SinkReplyList:

0:

Flags: COMPLETED

Status: 0

BytesMoved: 33 MB

For Mvr3:

RequestID: x

Flags: COMPLETED

Status: 0

DevSpecReply: NULL

SrcReplyLength: 1

SinkReplyLength: 1

SrcReplyList:

0:

Flags: COMPLETED | POSITIONVALID

Status: 0

BytesMoved: 33 MB

Position:

Whence: 0

Granularity: Bytes

Offset: 64 KB

AbsolutePosition:0

SinkReplyList:

0:

Flags: COMPLETED

Status: 0

BytesMoved: 33 MB

The Storage Server receives the IORs and maps the status information into physical volume status, virtual

volume status, and eventually logical volume status. The IOR returned to the Bitfile Server would look

like:

RequestID: Req1

Flags: COMPLETED

Status: 0

DevSpecReply: NULL

SrcReplyLength: 1

SinkReplyLength: 1

SrcReplyList:

0:

Flags: COMPLETED

Status: 0

Appendix C - Notes

C-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

BytesMoved: 100 MB

SinkReplyList:

0:

Flags: COMPLETED

Status: 0

BytesMoved: 100 MB

The Bitfile Server receives the IOR and maps the source reply list into bitfile information that the client will

understand. The IOR returned to the client would look as follows. Since we had only one logical segment,

the IOR structures are actually identical.

RequestID: Req1

Flags: COMPLETED

Status: 0

DevSpecReply: NULL

SrcReplyLength: 1

SinkReplyLength: 1

SrcReplyList:

0:

Flags: COMPLETED

Status: 0

BytesMoved: 100 MB

SinkReplyList:

0:

Flags: COMPLETED

Status: 0

Appendix C - Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 C-9
Release 4.2, Revision 1

BytesMoved: 100 MB

Usage of IOD/IOR with Mover Protocol
For Release 3, IOD/IOR modifications are made to:

• Support disk devices (addition of DEVICE_CLEAR device specific request).

• Support intermediate (Mover) replies, containing listen port addressing information.

• Support specification of the use of a Mover-to-Mover data transfer control protocol. This

protocol supports dynamic data transport selection and Mover-to-Mover flow control

over a potentially very large data transfer.

The modification to support disk devices was not extensive. Some of the currently used fields defined in

the IOD/IOR, notably BlocksBetweenTapeMarks will be unused when making requests that involve disk

device addresses. The only addition is a device specific command, DEVICE_CLEAR, which can be used

to request that a section of the disk media be zeroed out.

To support an intermediate reply made from a Mover after it has put out listen ports for the control dia-

logue in the Mover-to-Mover protocol (mentioned below), it was necessary to add a ReplyAddr field to the

request specific information in the IOD. Note that it is not a restriction on the intermediate reply that it be

used with the Mover-to-Mover protocol, but that is the primary use.

To support the Mover-to-Mover protocol, an additional bit value is added to the IOD Flags field,

CONTROL_ADDR, which indicates that the data transfer should use the Mover-to-Mover protocol, and

indicates that the addressing information present in this source/sink descriptor is the peer Mover's control

listen port addressing information.

A brief example follows to illustrate the use of the additional capabilities for the Mover-to-Mover protocol:

The BFS decides to move data from a single tape to a single disk (for simplicity's sake). The tape

is controlled by the storage server tape_ss and the Mover tape_mvr. The disk is controlled by the

storage server disk_ss and the Mover disk_mvr.

1. BFS creates a listen port and spawns a task to wait for the Mover intermediate replies (note

that in the general case, the BFS may receive many such replies).

2. BFS builds a WRITE IOD, specifying REPLYWHENREADY in the IOD Flags field. The

IOD contains a NULL source descriptor list. BFS sends the IOD to disk_ss.

3. disk_ss translates the sink descriptor list and forwards the IOD to disk_mvr.

4. disk_mvr puts out a listen, places the address in an IOR and replies to the address speci-

fied in the request specific information of the IOD (which corresponds to the listen put out

by BFS in step (1)). The src/sink descriptors returned will specify CONTROL_ADDR in

the Flags field to indicate that they represent control ports (i.e., Mover protocol messages

will be expected). Also included will be indication of disk_mvr's data transfer options.

5. BFS receives the Mover listen port information, and uses it in the sink descriptor list of a

READ IOD, which is sent to tape_ss.

6. tape_ss translates the source descriptor and forwards the request to tape_mvr.

Appendix C - Notes

C-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

7. tape_mvr connects to the listen port put out by disk_mvr in step (4), and sends indication

of the transport option (IP, IPI-3, etc.) selected, and the offset and length of the first piece

of the transfer to be sent.

8. disk_mvr responds with data port listen addresses, maximum length which it can handle

before more control protocol dialogue must take place, and transfer identifiers, if necessary

(these will likely be included in the data port addresses).

9. tape_mvr connects to data ports and sends data (with tag information, if necessary).

10. Steps (7) through (9) are repeated until the end of the transfer.

11. tape_mvr replies to tape_ss, which in turn replies to BFS. BFS drops the Mover reply

connection established with disk_mvr in step (4), to indicate that the request is complete.

Note that the disk Movers may have already completed, if their part of the transfer has

completed.

12. disk_mvr responds to disk_ss, which in turn responds to BFS.

Appendix D - Acronyms

HPSS Programmer’s Reference, Vol. 1 December 2000 D-1
Release 4.2, Revision 1

Appendix D - Acronyms

ACL Access Control List

ACLS Automated Cartridge System Library Software (Science Technology Corporation)

AIX Advanced Interactive Executive

API Application Program Interface

BFS Bitfile Server

CDS Cell Directory Server

DCE Distributed Computing Environment

DFS Distributed File System

EFS External File System

FTP File Transfer Protocol

gid Group Identifier

HIPPI High Performance Parallel Interface

HPSS High Performance Storage System

IBM International Business Machines Corporation

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

I/O Input / Output

IOD I/O Descriptor

IOR I/O Reply

IP Internet Protocol

IPI Intelligent Peripheral Interface

LaRC Langley Research Center

LANL Los Alamos National Laboratory

LLNL Lawrence Livermore National Laboratory

MPI-IO Message Passing Interface - Input / Output

NASA National Aeronautics and Space Administration

NFS Network File System

NS Name Server

ORNL Oak Ridge National Laboratory

OSF Open Software Foundation

PFTP Parallel File Transfer Protcol

POSIX Portable Operating System Interface for computer environments (an IEEE operating

system standard)

RISC Reduced Instruction Set Computer

SFS Structured File Server

SNL Sandia National Laboratories

SP Scalable Processor

TCP Transmission Control Protocol

uid User Identifier

VV Virtual Volume

Appendix D - Acronyms

D-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Appendix E - References

HPSS Programmer’s Reference, Vol. 1 December 2000 E-3
Release 4.2, Revision 1

Appendix E - References

1. File Transfer Protocol, RFC-0959, October 1985.

2. IEEE Std 1003.1-1990 Standard for Information Technology - Portable Operating System Inter-
face (POSIX) - Part 1: System Application Programming Interface (API).

3. HPSS Error Messages Manual, November 2000.

4. HPSS Programmer's Reference Guide, Volume 2, November 2000.

5. HPSS Installation Guide, November 2000.

6. HPSS Management Guide, November 2000.

7. HPSS User's Guide, November 2000.

8. Institute of Electrical and Electronics Engineers (IEEE) Mass Storage System Reference Model
(MSSRM) (Version 5).

9. Network File System Specification, RFC-1094, DDN Network Information Center, SRI Interna-

tional, Menlo Park, Ca.

10. OSF DCE User's Guide amd Reference, Prentice Hall, Englewood Cliffs, N. J.

11. P1003.1a Draft Revision to Information Technology - POSIX Part 1: System Application
Program Interface (API) [C Language].

Appendix E - References

E-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --5
Release 4.2, Revision 1

Appendix F - MPI-IO Pr ogramming Examples

Coding examples for opening, setting views, reading, writing, and closing HPSS MPI-IO files are provided

below. Both collective and noncollective read and write examples are included.

Sample Makefile for Example Code

The following Makefile may be used to compile and load example code, where the source to be compiled

is generically named mpio_example.c. The Makefile may be used for either AIX or Solaris, and for any of

the three host MPIs available across these systems, by selecting the appropriate settings for PLATFORM

and MPI_HOST.

Makefile for MPI-IO examples

PLATFORM = AIX

#PLATFORM = AIX_SMP

#PLATFORM = SOLARIS

MPI_HOST = MPICH

#MPI_HOST = IBM_POE

#MPI_HOST = SUN_HPC

MPI_MPICH = /usr/local/mpi

MPI_IBM_POE = /usr/lpp/ppe.poe

MPI_SUN_HPC = /opt/SUNWhpc

MPI = $(MPI_$(MPI_HOST))

ENCINA_AIX = /usr/lpp/encina

ENCINA_AIX_SMP = /usr/lpp/encina

ENCINA_SOLARIS = /opt/encina

ENCINA = $(ENCINA_$(PLATFORM))

HPSS = /opt/hpss

INCLUDES = -I$(HPSS)/include -I$(MPI)/include \

-I/usr/include/dce -I$(ENCINA)/include

FLAGS_MPICH = -D_THREAD_SAFE

FLAGS_IBM_SMP = -D_THREAD_SAFE

FLAGS_SUN_HPC = -mt -D_THREAD_SAFE

Appendix F - MPI-IO Programming Examples

Appendix F --6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

FLAGS_AIX = -D_THREAD_SAFE -D_AIX_PTHREADS_D7 -D_AES_SOURCE \

-D_AIX32_THREADS=1 -DAIX_PROD

FLAGS_AIX_SMP = $(FLAGS_AIX)

FLAGS_SOLARIS = -mt -D_THREAD_SAFE \

-D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED=1 -D__EXTENSIONS__

FLAGS = $(FLAGS_$(MPI_HOST)) $(FLAGS_$(PLATFORM))

MPCC_MPICH = $(MPI)/bin/mpicc

MPCC_IBM_POE = $(MPI)/bin/mpcc_r

MPCC_SUN_HPC = $(MPI)/bin/tmcc

MPCC = $(MPCC_$(MPI_HOST))

CFLAGS = $(INCLUDES) $(FLAGS)

HOST_LIBS_AIX = -ldcepthreads -lpthreads_compat -lpthreads

HOST_LIBS_AIX_SMP = $(HOST_LIBS_AIX)

HOST_LIBS_SOLARIS = -lnsl -lsocket -z muldefs

HOST_LIBS = $(HOST_LIBS_$(PLATFORM))

MPI_LIB_MPICH = -lmpich

MPI_LIB_IBM_POE = -lmpi_r

MPI_LIB_SUN_HPC = -lmpi_mt

MPI_LIB = $(MPI_LIB_$(MPI_HOST))

LIB_DIRS = -L$(HPSS)/lib -L$(ENCINA)/lib

LIBS = $(LIB_DIRS) \

-lmpioapi \

$(MPI_LIB)\

-lhpss \

-lEncina \

-lEncClient \

-ldce \

$(HOST_LIBS)

.c.o:;@echo Compiling $< ...

@$(MPCC) $(CFLAGS) -c $<

all: mpio_example

mpio_example: mpio_example.o

@echo Loading $@

@$(MPCC) mpio_example.o $(LIBS) -o $@

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --7
Release 4.2, Revision 1

mpio_example.o: mpio_example.c

Executing MPI-IO applications

The resulting executable, mpio_example in the Makefile above, may be run using the host-appropriate

MPI command, which is mpirun for MPICH, poe for IBM’s POE, and mprun for SUN’s HPC. For exam-

ple, assuming the application is to be executed on 4 tasks, and that it expects the argument:

argv[1] HPSS file name

the following commands could be used:

For MPICH:

mpirun -np 4 mpio_example /hpsshome/mpiouser/filename

For IBM POE:

poe mpio_example /hpsshome/mpiouser/filename -procs 4

For Sun HPC:

mprun -np 4 mpio_example /hpsshome/mpiouser/filename

Please refer to the MPI host-specific man pages and documentation for information on the other command

line arguments that may be used with each MPI.

Example 1: Basic file I/O

/* Basic MPI-IO example */

#include <mpio.h>

#include <stdio.h>

#define MAX_DATA_SIZE0x00100000/* 2 ** 20 = 1M */

main(int argc, char ** argv)

{

char * filename;

char buffer[MAX_DATA_SIZE];

int myrank;

int nprocs;

int amode;

MPI_Offsetmyoffset;

MPI_Filefh;

MPI_Statusstatus;

int rc;

Appendix F - MPI-IO Programming Examples

Appendix F --8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

int i;

if (argc < 2) {

printf(“Usage:%s <hpss_filename>\n”, argv[0]);

exit(-1);

}

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf(“MPI-IO example to open/write/read/close a file\n”);

filename = argv[1];

amode = MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_DELETE_ON_CLOSE;

rc = MPI_File_open(MPI_COMM_WORLD, filename, amode, MPI_INFO_NULL,

&fh);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t open file %s\n”, filename);

MPI_Abort(MPI_COMM_WORLD, rc);

}

memset(buffer, (char)myrank, MAX_DATA_SIZE);

printf(“Writing to file\n”);

myoffset = myrank * MAX_DATA_SIZE;

rc = MPI_File_write_at(fh, myoffset, buffer, MAX_DATA_SIZE,

MPI_BYTE, &status);

if (rc != MPI_SUCCESS) {

printf(“Error writing to file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

memset(buffer, -1, MAX_DATA_SIZE);

printf(“Reading from file\n”);

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --9
Release 4.2, Revision 1

rc = MPI_File_read_at(fh, myoffset, buffer, MAX_DATA_SIZE,

MPI_BYTE, &status);

if (rc != MPI_SUCCESS) {

printf(“Error reading from file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

for (i = 0; i < MAX_DATA_SIZE; i++) {

if ((int)buffer[i] != myrank) {

printf(“Error in data read from file\n”);

break;

}

}

rc = MPI_File_close(&fh);

if (rc != MPI_SUCCESS) {

printf(“Error closing file: %d\n”, rc);

}

MPI_Finalize();

printf(“All done\n”);

}

Example 2: File views and collective I/O

/* Using file views and collective I/O in MPI-IO */

#include <mpio.h>

#include <stdio.h>

#define MAX_DATA_SIZE0x00100000/* 2 ** 20 = 1M */

main(int argc, char ** argv)

{

char * filename;

int buffer[MAX_DATA_SIZE];

int myrank;

int nprocs;

Appendix F - MPI-IO Programming Examples

Appendix F --10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

int amode;

MPI_Offsetmyoffset;

MPI_Filefh;

MPI_Statusstatus;

MPI_Datatypeintblock;

int rc;

int i;

if (argc < 2) {

printf(“Usage:%s <hpss_filename>\n”, argv[0]);

exit(-1);

}

filename = argv[1];

printf(“MPI-IO example using collective I/O for data access.\n”);

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

amode = MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_DELETE_ON_CLOSE;

rc = MPI_File_open(MPI_COMM_WORLD, filename, amode, MPI_INFO_NULL,

&fh);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t open file %s\n”, filename);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/* Set file view to tiling of MPI_INTs */

rc = MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT,

“native”, MPI_INFO_NULL);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t set file view: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

for (i = 0; i < MAX_DATA_SIZE; i++)

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --11
Release 4.2, Revision 1

buffer[i] = myrank;

printf(“Writing to file\n”);

myoffset = myrank * MAX_DATA_SIZE * sizeof(int);

rc = MPI_File_write_at_all(fh, myoffset, buffer, MAX_DATA_SIZE,

MPI_INT, &status);

if (rc != MPI_SUCCESS) {

printf(“Error writing to file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/* Reset file view to tiling of contiguous block of ints */

rc = MPI_Type_contiguous(MAX_DATA_SIZE, MPI_INT, &intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t construct file type: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_Type_commit(&intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t commit file type: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, intblock,

“native”, MPI_INFO_NULL);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t set file view: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

memset(buffer, -1, MAX_DATA_SIZE * sizeof(int));

/* Note that offset is still in terms of etypes*/

printf(“Reading from file\n”);

Appendix F - MPI-IO Programming Examples

Appendix F --12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

rc = MPI_File_read_at_all(fh, myoffset, buffer, 1, intblock, &status);

if (rc != MPI_SUCCESS) {

printf(“Error reading from file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

for (i = 0; i < MAX_DATA_SIZE; i++) {

if (buffer[i] != myrank) {

printf(“Error in data read from file\n”);

break;

}

}

rc = MPI_File_close(&fh);

if (rc != MPI_SUCCESS) {

printf(“Error closing file: %d\n”, rc);

}

MPI_Finalize();

printf(“All done\n”);

}

Example 3: I/O using file pointers

/* Using independent file pointers in MPI-IO */

#include <mpio.h>

#include <stdio.h>

#define MAX_DATA_SIZE0x00100000/* 2 ** 20 = 1M */

main(int argc, char ** argv)

{

char * filename;

int buffer[MAX_DATA_SIZE];

int myrank;

int nprocs;

int amode;

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --13
Release 4.2, Revision 1

int blocksize;

MPI_Filefh;

MPI_Datatypeintblock;

MPI_Statusstatus;

MPI_Offsetmydisp;

MPI_Offsetposition;

MPI_Offsetbyte_offset;

MPI_Offsetwritten_size;

MPI_Offsetexpected_size;

int rc;

int i;

if (argc < 2) {

printf(“Usage:%s <hpss_filename>\n”, argv[0]);

exit(-1);

}

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf(“MPI-IO example using file pointers for data access\n”);

filename = argv[1];

amode = MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_DELETE_ON_CLOSE;

rc = MPI_File_open(MPI_COMM_WORLD, filename, amode, MPI_INFO_NULL,

&fh);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t open file %s\n”, filename);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/*

 * Set view so that data each task writes will be written at the

 * right offsets in the file: two blocks per task, with a stride

 * between them to skip over data from other tasks. Use the

 * file displacement of the view to set the position of each

 * task’s first byte.

 */

Appendix F - MPI-IO Programming Examples

Appendix F --14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

blocksize = MAX_DATA_SIZE / 2;/* in etypes */

rc = MPI_Type_vector(2, blocksize, nprocs * blocksize,

MPI_INT, &intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t construct file type\n”);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_Type_commit(&intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t commit file type\n”);

MPI_Abort(MPI_COMM_WORLD, rc);

}

mydisp = myrank * blocksize * sizeof(int); /* in bytes */

rc = MPI_File_set_view(fh, mydisp, MPI_INT, intblock,

“native”, MPI_INFO_NULL);

for (i = 0; i < MAX_DATA_SIZE; i++)

buffer[i] = myrank;

printf(“Writing to file\n”);

rc = MPI_File_write(fh, buffer, MAX_DATA_SIZE,

MPI_INT, &status);

if (rc != MPI_SUCCESS) {

printf(“Error writing to file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/*

 * The file position per view should be the same: each

 * task thinks it has written MAX_DATA_SIZE ints.

 */

rc = MPI_File_get_position(fh, &position);

if (rc != MPI_SUCCESS) {

printf(“Error getting file position: %d\n”, rc);

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --15
Release 4.2, Revision 1

MPI_Abort(MPI_COMM_WORLD, rc);

}

if (position != MAX_DATA_SIZE) {

printf(“File position is %lld, but expected MAX_DATA_SIZE\n”,

position);

}

/* After all tasks have written their data, check file size */

rc = MPI_File_sync(fh);

if (rc != MPI_SUCCESS) {

printf(“Error syncing file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_File_get_size(fh, &written_size);

expected_size = nprocs * MAX_DATA_SIZE * sizeof(int);

if (written_size != expected_size) {

printf(“Written size is %lld, but expected %lld\n”,

written_size, expected_size);

}

/*

 * Seek back to the beginning of the file; check position and

 * byte offset after seek.

 */

MPI_File_seek(fh, 0, MPI_SEEK_SET);

rc = MPI_File_get_position(fh, &position);

if (rc != MPI_SUCCESS) {

printf(“Error getting file position: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

if (position != 0) {

printf(“File position is %lld, but expected 0\n”, position);

}

Appendix F - MPI-IO Programming Examples

Appendix F --16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

/*

 * Converting position to byte offset should give us the file

 * displacement used, per task.

 */

rc = MPI_File_get_byte_offset(fh, position, &byte_offset);

if (rc != MPI_SUCCESS) {

printf(“Error converting position to byte_offset: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

if (byte_offset != mydisp) {

printf(“Byte offset is %lld, but expected %lld\n”,

byte_offset, mydisp);

}

/* Read the data back, and check it */

memset(buffer, -1, MAX_DATA_SIZE * sizeof(int));

printf(“Reading from file\n”);

rc = MPI_File_read(fh, buffer, MAX_DATA_SIZE,

MPI_INT, &status);

if (rc != MPI_SUCCESS) {

printf(“Error reading from file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

for (i = 0; i < MAX_DATA_SIZE; i++) {

if (buffer[i] != myrank) {

printf(“Error in data read from file\n”);

break;

}

}

rc = MPI_File_close(&fh);

if (rc != MPI_SUCCESS) {

printf(“Error closing file: %d\n”, rc);

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --17
Release 4.2, Revision 1

}

MPI_Finalize();

printf(“All done\n”);

}

Example 4: Enabling cached I/O

/* Using automatic caching in HPSS MPI-IO */

#include <mpio.h>

#include <stdio.h>

#define MAX_DATA_SIZE0x00100000/* 2 ** 20 = 1M */

main(int argc, char ** argv)

{

char * filename;

int buffer[MAX_DATA_SIZE];

int * bufptr;

int myrank;

int nprocs;

int amode;

MPI_Offsetmyoffset;

MPI_Offsetoffset;

MPI_Filefh;

MPI_Statusstatus;

MPI_Datatypeintblock;

int blen;

int disp;

int rc;

int i;

if (argc < 2) {

printf(“Usage:%s <hpss_filename>\n”, argv[0]);

exit(-1);

}

filename = argv[1];

printf(“MPI-IO example enabling cached I/O for data access.\n”);

Appendix F - MPI-IO Programming Examples

Appendix F --18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

amode = MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_UNIQUE_OPEN;

rc = MPI_File_open(MPI_COMM_WORLD, filename, amode, MPI_INFO_NULL,

&fh);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t open file %s\n”, filename);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/* Set file view to tiling of blocks of MPI_INTs */

blen = MAX_DATA_SIZE;

disp = MAX_DATA_SIZE * myrank;

rc = MPI_Type_indexed(1, &blen, &disp, MPI_INT, &intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t create file type: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_Type_commit(&intblock);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t commit file type: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

rc = MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, intblock,

“native”, MPI_INFO_NULL);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t set file view: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

for (i = 0; i < MAX_DATA_SIZE; i++)

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --19
Release 4.2, Revision 1

buffer[i] = myrank;

myoffset = myrank * MAX_DATA_SIZE * sizeof(int);

/*

 * For illustration, we do data accesses in smaller amounts

 * than optimal for the file type. Small accesses are not

 * efficient for HPSS, either, so caching will effectively

 * postpone writing to HPSS until the cache is full or the

 * file is closed.

 */

printf(“Writing to file\n”);

offset = myoffset;

bufptr = buffer;

for (i = 0; i < MAX_DATA_SIZE / 512; i++) {

rc = MPI_File_write_at_all(fh, offset, bufptr, 512,

MPI_INT, &status);

if (rc != MPI_SUCCESS) {

printf(“Error writing to file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

offset += 512;

bufptr += 512;

}

memset(buffer, -1, MAX_DATA_SIZE * sizeof(int));

printf(“Reading from file\n”);

offset = myoffset;

bufptr = buffer;

for (i = 0; i < MAX_DATA_SIZE / 256; i++) {

rc = MPI_File_read_at_all(fh, offset, bufptr, 256,

MPI_INT, &status);

if (rc != MPI_SUCCESS) {

printf(“Error reading from file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

Appendix F - MPI-IO Programming Examples

Appendix F --20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

offset += 256;

bufptr += 256;

}

for (i = 0; i < MAX_DATA_SIZE; i++) {

if (buffer[i] != myrank) {

printf(“Error in data read from file\n”);

break;

}

}

/* Closing the file will cause cache flush */

printf(“Closing the file\n”);

rc = MPI_File_close(&fh);

if (rc != MPI_SUCCESS) {

printf(“Error closing file: %d\n”, rc);

}

MPI_Finalize();

printf(“All done\n”);

}

Example 5: Nonblocking I/O

/* Using nonblocking I/O in MPI-IO */

#include <mpio.h>

#include <stdio.h>

#define MAX_DATA_SIZE0x00100000/* 2 ** 20 = 1M */

int nreps;

void compute_results(

int *result_buffer,

int *done

)

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --21
Release 4.2, Revision 1

{

static int count = 0;

/*

 * Compute results to place in result_buffer.

 * Return done = 1 when no more results.

 */

printf(“Computing results\n”);

count++;

if (count >= nreps) *done = 1;

}

main(

int argc,

char ** argv

)

{

char * filename;

int buffer[MAX_DATA_SIZE];

int myrank;

int nprocs;

int amode;

MPI_Filefh;

MPI_Statusstatus;

MPI_Requestrequest;

int done;

int rc;

int i;

if (argc < 3) {

printf(“Usage:%s <hpss_filename> #reps\n”, argv[0]);

exit(-1);

}

filename = argv[1];

nreps = atol(argv[2]);

printf(“MPI-IO example using nonblocking I/O for data access.\n”);

MPI_Init(&argc, &argv);

Appendix F - MPI-IO Programming Examples

Appendix F --22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

amode = MPI_MODE_CREATE | MPI_MODE_RDWR;

rc = MPI_File_open(MPI_COMM_WORLD, filename, amode, MPI_INFO_NULL,

&fh);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t open file %s\n”, filename);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/* Set file view to tiling of MPI_INTs */

rc = MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT,

“native”, MPI_INFO_NULL);

if (rc != MPI_SUCCESS) {

printf(“Couldn’t set file view: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

}

/*

 * Common use of nonblocking I/O would be to overlap I/O with

 * computation. Imagine a loop that computes, writes results,

 * and repeats: some variation on the basic outline below.

 */

done = 0;

compute_results(buffer, &done);

while (!done) {

printf(“Writing to file\n”);

rc = MPI_File_iwrite(fh, buffer, MAX_DATA_SIZE,

MPI_INT, &request);

if (rc != MPI_SUCCESS) {

printf(“Error writing to file: %d\n”, rc);

MPI_Abort(MPI_COMM_WORLD, rc);

Appendix F - MPI-IO Programming Examples

HPSS Programmer’s Reference, Vol. 1 December 2000 Appendix F --23
Release 4.2, Revision 1

}

compute_results(buffer, &done);

MPI_Wait(&request, &status);

}

rc = MPI_File_close(&fh);

if (rc != MPI_SUCCESS) {

printf(“Error closing file: %d\n”, rc);

}

MPI_Finalize();

printf(“All done\n”);

}

Appendix F - MPI-IO Programming Examples

Appendix F --24 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

HPSS Programmer’s Reference, Vol. 1 December 2000 -1
Release 4.2, Revision 1

Index

Numerics
64-bit Arithmetic Library

add64_3m,5-3
add64m,1-9, 5-2
and64m,1-9, 5-4
bld64m, 1-9, 5-5
cast64m,1-9, 5-6
Components,1-9
Constraints,1-10
div_2xcl64m, 1-9
div_cl64m, 1-9, 5-9, 5-10
div2x64m, 1-9, 5-8
div64m, 1-9, 5-7
eq64m,1-9, 5-12
eqz64m,1-9, 5-11
ge64m,1-9, 5-13
gt64m, 1-9, 5-14
high32m, 1-9, 5-15
le64m, 1-9, 5-16
Libraries, 1-10
low32m, 1-9, 5-17
lt64m, 1-9, 5-18
mod2x64m,1-9, 5-20
mod64m,1-9, 5-19
mul64m, 1-9, 5-21
neq64m,1-10
neqz64m,1-9, 5-22
not64m, 1-10, 5-23
or64m, 1-10, 5-24
Purpose,1-8
shl64m, 1-10, 5-25
shr64m,1-10, 5-26
sub64_3m,5-28
sub64m,1-10, 5-27

A
acct_rec_t, 2-166
add64_3m, 5-3
add64m, 1-9, 5-2
address_t 3-8
and64m, 1-9, 5-4
api_config_t, 2-167
B
bf_attrib_md_t, 2-157
bf_attrib_t, 2-155
bf_vv_attrib_t, 2-162

-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

bf_xattrib_t, 2-156
bfs_owner_rec_t, 2-160
bfs_sc_attrib_t, 2-161
bfs_stats_t, 2-165
bld64m, 1-9, 5-5
C
cast64m, 1-9, 5-6
class of service, 1-14
Client API

components,1-1
constraints,1-3
environment variables (also see Environment Variables),1-3
libraries (also see Libraries),1-3

Client API Functions 2-1
Client API, 1-15
collective functions, 6-1
completion_msg_t, 4-51
COS, 1-14
D
DCE User Accounts, 1-18
dce_login, 1-18
directory operations, A-62, 20
displacement, 6-4
div_2xcl64m, 1-9, 5-10
div_cl64m, 1-9, 5-9
div2x64m, 1-9, 5-8
div64m, 1-9, 5-7
E
e64m, 5-16
end of file, 6-4
Environment Variables

HPSS_BUSY_DELAY,1-4, 1-13
HPSS_BUSYRETRIES,1-4
HPSS_DEBUG,1-4
HPSS_DEBUGPATH,1-4
HPSS_DESC_NAME,1-4
HPSS_DMAP_WRITE_UPDATES,1-5
HPSS_HOSTNAME,1-4, 1-8
HPSS_KTAB_PATH,1-4
HPSS_LS_NAME,1-3, 1-13
HPSS_MAX_CONN,1-3
HPSS_NUMRETRIES,1-5
HPSS_PRINCIPAL,1-4
HPSS_REGISTRY_SITE_NAME,1-5
HPSS_RETRY_STAGE_INP,1-4
HPSS_REUSE_CONNECTIONS,1-5
HPSS_SERVER_NAME,1-4

HPSS Programmer’s Reference, Vol. 1 December 2000 -3
Release 4.2, Revision 1

HPSS_TOTAL_DELAY, 1-5
HPSS_TRANSFER_TYPE,1-4
HPSS_USE_PORT_RANGE,1-5
MPIO_DEBUG, 1-14
MPIO_KEYTAB_PATH, 1-14
MPIO_LOGIN_NAME, 1-14

eq64m, 1-9, 5-12
eqz64m, 1-9, 5-11
etype, 6-4
F
file family, 1-15
file handle, 6-4
file hints, 6-106
file pointer, 6-4
filetype, 6-4
G
ge64m, 1-9, 5-13
get and set file attributes, A-65
get and set the client API library configuration, A-72
get file system information for a COS, A-71
gt64m, 1-9, 5-14
H
high32m, 1-9, 5-15
HPSS

overview, 1-1
hpss_Access, 1-2, 2-3
HPSS_BUSY_DELAY, 1-4, 1-13
HPSS_BUSY_RETRIES, 1-4
hpss_Chacct, 1-2, 2-6
hpss_Chdir, 1-2, 2-9
hpss_Chmod, 1-2, 2-10, 6-106
hpss_Chown, 1-2, 2-11
hpss_Chroot, 1-2, 2-13
hpss_ClientAPIInit, 1-2
hpss_ClientAPIReset, 1-2, 2-15
hpss_Close, 1-2, 2-16, A-5, A-8, A-70
hpss_Closedir, 1-2, 2-17, A-65
hpss_cos_hints_t, 2-137
hpss_cos_priorities_t, 2-139
hpss_Create, 1-2, 2-22
HPSS_DEBUG, 1-4
HPSS_DEBUGPATH, 1-4
hpss_DeleteACL, 1-2
hpss_DeleteAcl, 2-24
HPSS_DESC_NAME, 1-4
HPSS_DMAP_WRITE_UPDATES, 1-5, 1-8

-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

hpss_Fclear, 1-2, 2-26
hpss_FclearOffset, 2-27
hpss_fileattr_t, 2-144
hpss_FileGetAttributes, 1-2, 2-28, A-66, A-67
hpss_FileGetXAttributes, 1-2, 2-29
hpss_FileSetAttributes, 1-2, 2-31, A-67
hpss_FilesetCreate, 1-2, 2-34
hpss_FilesetDelete, 2-36
hpss_FilesetDeletes, 1-2
hpss_FilesetGetAttributes, 1-2, 2-37
hpss_FilesetListAll, 1-2, 2-39
hpss_FilesetSetAttributes, 1-2, 2-41
hpss_Fpreallocate, 1-2
hpss_Fstat, 1-2, 2-44
hpss_Ftruncate, 1-2, 2-45
hpss_GetAcct, 1-2, 2-46
hpss_GetACL, 1-2, 2-48
hpss_GetBFSStats, 1-2, 2-50
hpss_GetConfiguration, 1-2, 2-51, A-74
hpss_Getcwd, 1-2, 2-52
hpss_GetListAttrs, 1-2, 2-53, A-64
HPSS_HOSTNAME, 1-4, 1-8
hpss_JunctionCreate, 1-2, 2-54
hpss_JunctionDelete, 1-2, 2-56
HPSS_KTAB_PATH, 1-4
hpss_Link, 1-2, 2-57, A-70
hpss_LoadDefaultThreadState, 1-2, 2-60
hpss_LoadThreadState, 1-2, 2-59
HPSS_LS_NAME, 1-3, 1-8, 1-13
hpss_Lseek, 1-2, 2-61
hpss_LseekOffset, 1-2
hpss_Lstat, 1-2, 2-63, A-69
HPSS_MAX_CONN, 1-3
hpss_Migrate, 1-2, 2-65
hpss_Mkdir, 1-2, 2-67
HPSS_NUMRETRIES, 1-5
hpss_Open, 1-2, 1-14, 2-69, A-4, A-7, A-69
hpss_OpenBitfile, 1-2, 2-72
hpss_Opendir, 1-2, 2-74, A-63
HPSS_PRINCIPAL, 1-4
hpss_Purge, 1-2, 2-76
hpss_PurgeLock, 1-2, 2-78
hpss_PurgeLoginContext, 1-2, 2-79
hpss_PVRetrievals, 1-7, 2-135
hpss_Read, 1-2, 2-80, A-6, A-7
hpss_ReadAttrs, 1-2, 2-82

HPSS Programmer’s Reference, Vol. 1 December 2000 -5
Release 4.2, Revision 1

hpss_Readdir, 1-2, 2-84, A-63
hpss_Readlink, 1-2, 2-85, A-64
hpss_ReadList, 1-2, 2-87, 4-1, A-1, A-35, B-1, 17

example,A-35
HPSS_REGISTRY_SITE_NAME, 1-5
hpss_Rename, 1-2, 2-89
hpss_ReopenBitfile, 1-2, 2-91
HPSS_RETRY_STAGE_INP, 1-4
HPSS_REUSE_CONNECTIONS, 1-5
hpss_Rewinddir, 1-2, 2-93
hpss_Rmdir, 1-2, 2-94
HPSS_SERVER_NAME, 1-4, 1-8
hpss_SetAcct, 1-2, 2-97
hpss_SetACL, 1-2, 2-95
hpss_SetBFSStats, 1-2, 2-100
hpss_SetConfiguration, 1-2, 2-101, A-74
hpss_SetCOSByHints, 2-102
hpss_SetFileOffset, 1-2, 2-104
hpss_SetLoginContext, 1-2, 2-106
hpss_Stage, 1-2, 2-109
hpss_StageCallBack, 2-111
hpss_Stat, 1-2, 2-113, A-68
hpss_Statfs, 1-2, 2-115, A-71
hpss_Symlink, 1-2, 2-117, A-70
hpss_ThreadCleanUp, 1-2, 2-1, 2-118
HPSS_TOTAL_DELAY, 1-5
HPSS_TRANSFER_TYPE, 1-4, 1-8
hpss_Truncate, 1-2, 2-119
hpss_Umask, 1-2, 2-120
hpss_Unlink, 1-2, 2-121, A-69, A-71
hpss_UpdateACL, 1-2, 2-123
HPSS_USE_PORT_RANGE, 1-5
hpss_Utime, 1-2, 2-125
hpss_Write, 1-2, 2-127, A-2, A-5, A-70
hpss_WriteList ,

example,A-8
hpss_WriteList, 1-2, 2-129, 4-1, A-1, A-8, B-1, 12
hpss_XLoadThreadState, 2-131
hpssuser, 1-15
I
I/O Descriptor

components,3-1
purpose,3-1

I/O Reply
components,3-2
purpose,3-1

-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

individual file pointer, 6-4
initiator_ipaddr_t, 4-52
initiator_ipi3addr_t, 4-53
initiator_msg_t, 4-49
initiator_shmaddr_t, 4-54
IOD_t, 3-3
IOR_t, 3-17
IPI-3 Data Transfer Functions

ipi3_data3_cancel,4-9
ipi3_data3_close,4-3
ipi3_data3_complete,4-8
ipi3_data3_open,4-2
ipi3_data3_read,4-4
ipi3_data3_write,4-6

IPI-3 Data Transfer Library Data Definitions
IPI-3 interface address,4-10

ipi3_data3_cancel, 4-9
ipi3_data3_close, 4-3
ipi3_data3_complete, 4-8
ipi3_data3_open, 4-2, 4-10
ipi3_data3_read, 4-4, 4-6, 4-8
ipi3_data3_write, 4-8
IPI3_INTERFACE_STRUCT, 4-10
K
kdestroy, 1-18
keytab file, 1-13
kinit, 1-18
klist, 1-18
L
le64m, 1-9
Libraries

libdce.a, 1-3, 1-8, 1-12
libEncClient.a,1-12
libEncina.a,1-3, 1-8, 1-12
libhpss.a,1-3, 1-7, 1-12
libhpss_ipi.a,1-3
libmpi.a, 1-12
libmpioapi.a, 1-12

link operations, A-67
low32m, 1-9
lshpss, 1-14
lt64m, 1-9, 5-18
M
makefile

sample,A-1, B-1, 5
Math Library Data Definitions

u_signed64,5-29

HPSS Programmer’s Reference, Vol. 1 December 2000 -7
Release 4.2, Revision 1

unsigned32,5-29
mod2x64m, 1-9, 5-20
mod64m, 1-9, 5-19
Mover Protocol Data Structures

completion message,4-51
Initiator Message,4-49
IPI-3 address,4-53
shared memory address,4-54
TCP/IP address,4-52

Mover Socket Functions
mover_socket_get_buffer,4-17
mover_socket_get_buffer_timeout,4-19
mover_socket_recv_data,4-21
mover_socket_recv_data_timeout,4-23
mover_socket_send_buffer,4-11
mover_socket_send_buffer_timeout,4-13
mover_socket_send_buffer_timeout_size,4-15
mover_socket_send_requested_data,4-25
mover_socket_send_requested_data_timeout,4-27
mover_socket_send_requested_data_timeout_size,4-29
mover_socket_waitfor_data,4-31
mover_socket_waitfor_data_timeout,4-33
mover_waitfor_requests,4-35
mover_waitfor_requests_timeout,4-37
mvrprot_recv_compmsg,4-47
mvrprot_recv_ipaddr,4-41
mvrprot_recv_ipi3addr,4-43
mvrprot_recv_shmaddr,4-45
mvrprot_send_compmsg,4-48
mvrprot_send_ipaddr,4-42
mvrprot_send_ipi3addr,4-44
mvrprot_send_shmaddr,4-46

mover to mover protocol, A-8, A-35
mover_socket_get_buffer, 4-17
mover_socket_get_buffer_timeout, 4-19
mover_socket_recv_data, 4-21
mover_socket_recv_data_timeout, 4-23
mover_socket_send_buffer, 4-11
mover_socket_send_buffer_timeout, 4-13
mover_socket_send_buffer_timeout_size, 4-15
mover_socket_send_requested_data, 4-25
mover_socket_send_requested_data_timeout, 4-27
mover_socket_send_requested_data_timeout_size, 4-29
mover_socket_waitfor_data, 4-31
mover_socket_waitfor_data_timeout, 4-33
mover_waitfor_requests, 4-35
mover_waitfor_requests_timeout, 4-37
MPI_File_call_errhandler, 1-12, 6-105

-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

MPI_File_close, 1-11, 6-3, 6-4, 6-8
MPI_File_create_errhandler, 1-12, 6-99, 6-102
MPI_File_delete, 1-11, 6-9, 6-99, 6-107
MPI_File_get_amode, 1-11, 6-17
MPI_File_get_atomicity, 1-11, 6-97
MPI_File_get_byte_offset, 1-11
MPI_File_get_errhandler, 1-12, 6-104
MPI_File_get_group, 1-11, 6-16
MPI_File_get_info, 1-11, 6-19, 6-106, 6-107
MPI_File_get_nthkey, 6-114
MPI_File_get_position, 1-11
MPI_File_get_position_shared, 1-11, 6-68
MPI_File_get_size, 1-11, 6-15
MPI_File_get_type_extent, 1-11, 6-91, 6-92
MPI_File_get_valuelen, 6-112
MPI_File_get_view, 1-11, 6-22
MPI_File_iread, 1-11
MPI_File_iread_at, 1-11
MPI_File_iread_shared, 1-11, 6-58
MPI_File_iwrite, 1-11
MPI_File_iwrite_at, 1-11
MPI_File_iwrite_shared, 1-11
MPI_File_open, 1-11, 6-1, 6-2, 6-3, 6-4, 6-5, 6-99, 6-107
MPI_File_preallocate, 1-11, 6-3
MPI_File_read_all_begin, 1-11, 6-76
MPI_File_read_all_end, 1-11, 6-78
MPI_File_read_at_all_begin, 1-11, 6-69
MPI_File_read_at_all_end, 1-11, 6-71
MPI_File_read_ordered, 1-11, 6-62
MPI_File_read_ordered_begin, 1-11, 6-83
MPI_File_read_ordered_end, 1-11, 6-85
MPI_File_read_shared, 1-11
MPI_File_seek, 1-11
MPI_File_seek_shared, 1-11, 6-3, 6-66
MPI_File_set_atomicity, 1-11, 6-3, 6-96
MPI_File_set_errhandler, 1-12, 6-99, 6-103
MPI_File_set_info, 1-11, 6-18, 6-107
MPI_File_set_size, 1-11, 6-3, 6-11
MPI_File_set_view, 1-11, 6-1, 6-3, 6-20, 6-90, 6-99, 6-107
MPI_File_sync 6-98
MPI_File_sync, 1-11, 6-3
MPI_File_write, 1-11
MPI_File_write_all, 1-11
MPI_File_write_all_begin, 1-11, 6-79
MPI_File_Write_all_end, 1-11
MPI_File_write_all_end, 6-81

HPSS Programmer’s Reference, Vol. 1 December 2000 -9
Release 4.2, Revision 1

MPI_File_write_at, 1-11
MPI_File_write_at_all, 1-11
MPI_File_write_at_all_begin, 1-11, 6-72
MPI_File_write_at_all_end, 1-11, 6-74
MPI_File_write_ordered, 1-11, 6-64
MPI_File_write_ordered_begin, 1-11, 6-86
MPI_File_write_ordered_end, 1-11, 6-88
MPI_File_write_shared, 1-11, 6-56
MPI_Info, 6-107
MPI_Info_create, 1-12, 6-107, 6-108
MPI_Info_delete, 1-12, 6-110
MPI_Info_dup, 1-12, 6-115
MPI_Info_free, 1-12, 6-107, 6-116
MPI_Info_get, 1-12, 6-107, 6-111
MPI_Info_get_nkeys, 1-12, 6-113
MPI_Info_get_nthkey, 1-12
MPI_Info_get_valuelen, 1-12
MPI_Info_set, 1-12, 6-107, 6-109
MPI_Offset 6-132
MPI_Offset, 6-132
MPI_Register_datarep, 1-11, 6-93
MPI_Test, 6-1, 6-101
MPI_Wait, 6-1, 6-101
MPI-IO access, 1-15
MPI-IO API

collective functions,6-1
Components,1-11
Constraints,1-12
Environment Variables,1-13
Libraries, 1-12
noncollective functions,6-1
Purpose,1-10

MPI-IO file, 6-4
MPI-IO Standard Data Definitions

MPI_Offset, 6-132
MPIO_DEBUG, 1-14
MPIO_KEYTAB_PATH, 1-14
MPIO_LOGIN_NAME, 1-14
mul64m, 1-9, 5-21
mvrprot_recv_compmsg, 4-47
mvrprot_recv_ipaddr, 4-41
mvrprot_recv_ipi3addr, 4-43
mvrprot_recv_shmaddr, 4-45
mvrprot_send_compmsg, 4-48
mvrprot_send_ipaddr, 4-42
mvrprot_send_ipi3addr, 4-44
mvrprot_send_shmaddr, 4-46

-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

N
neq64m, 1-10
neqz64m, 1-9, 5-22
netopt_FindEntry, 4-65
netopt_GetWriteSize, 4-66
Network Options Functions

netopt_FindEntry,4-65
netopt_GetWriteSize,4-66

noncollective functions, 6-1
Non-DCE Client API

components,1-7
constraints,1-7
environment variables (also see Environment Variables),1-8
libraries (also see Libraries),1-7

not64m, 1-10, 5-23
ns_ACLConfArray_t, 2-170
ns_ACLEntry_t, 2-171
ns_Attrs_t, 2-146
ns_ObjHandle_t, 2-152, 2-154
O
offset, 6-4
or64m, 1-10, 5-24
ow32m, 5-17
P
Parallel Data Transfer Data Definitions

header,4-64
Parallel Data Transfer Functions

pdata_recv_hdr,4-55
pdata_recv_hdr_timeout,4-56
pdata_send_hdr,4-57
pdata_send_hdr_and_data,4-59
pdata_send_hdr_and_data_timeout,4-60
pdata_send_hdr_and_data_timeout_size,4-62
pdata_send_hdr_timeout,4-58

participating process, 6-1
pdata_hdr_t, 4-64
pdata_recv_hdr, 4-55
pdata_recv_hdr_timeout, 4-56
pdata_send_hdr, 4-57
pdata_send_hdr_and_data, 4-59
pdata_send_hdr_and_data_timeout, 4-60
pdata_send_hdr_and_data_timeout_size, 4-62
pdata_send_hdr_timeout, 4-58
pv_list_element_t, 2-163
pv_list_t, 2-164
R
rgy_edit, 1-13

HPSS Programmer’s Reference, Vol. 1 December 2000 -11
Release 4.2, Revision 1

S
shared file pointer, 6-4
shl64m, 1-10, 5-25
shr64m, 1-10, 5-26
size, 6-4
srcsinkdesc_t 3-6
srcsinkreply_t, 3-21
storage class, 1-14
storage hierarchy, 1-15
Structures

account record,2-166
address,3-8
API configuration,2-167
bitfile metadata attributes,2-157
bitfile owner record,2-160
bitfile server statistics2-165
bitfile server storage class attributes2-161
bitfile server virtual volume attributes2-162
bitfile volatile and extended metadata attributes,2-156
bitfile volatile and metadata attributes,2-155
COS priorities,2-139
file attribute, 2-144
file creation hint,2-137
I/O descriptor,3-3
I/O reply, 3-17
NS ACL conformant array,2-170
NS ACL entry, 2-171
NS attribute,2-146
NS directory entry,2-154
NS object handle,2-152
source/sink descriptor,3-6
source/sink reply,3-21
storage server physical volume attributes2-163
storage server physical volume attributes conformant array2-164

sub64_3m, 5-28
sub64m, 1-10, 5-27
U
u_signed64, 5-29
unsigned32, 5-29
User IDs, 1-15
V
view, 6-4

	Preface
	Chapter 1. Overview
	1.1. Client API
	1.1.1. Purpose
	1.1.2. Components
	1.1.3. Constraints
	1.1.4. Libraries
	1.1.5. Environment Variables

	1.2. Supplemental Data Transfer Functions
	1.2.1. Purpose
	1.2.2. Components
	1.2.2.1. IPI-3 Data Transfer
	1.2.2.2. Mover Socket (Parallel TCP/IP Data Transfer)
	1.2.2.3. Mover Protocol
	1.2.2.4. Parallel Data Transfer
	1.2.2.5. Network Options

	1.2.3. Constraints
	1.2.4. Libraries

	1.3. Non-DCE Client API
	1.3.1. Purpose
	1.3.2. Components
	1.3.3. Constraints
	1.3.4. Libraries
	1.3.5. Environment Variables

	1.4. 64-bit Arithmetic Library
	1.4.1. Purpose
	1.4.2. Components
	1.4.3. Constraints
	1.4.4. Libraries

	1.5. MPI-IO API
	1.5.1. Purpose
	1.5.2. Components
	1.5.3. Constraints
	1.5.4. Libraries
	1.5.5. Environment Variables

	1.6. Storage Concepts
	1.6.1. Class of Service
	1.6.2. Storage Class
	1.6.3. Storage Hierarchy
	1.6.4. File Family

	1.7. User IDs
	1.8. Access Control List API
	1.8.1. Purpose
	1.8.2. Components
	1.8.3. Constraints
	1.8.4. Libraries

	1.9. DCE User Accounts

	Chapter 2. Client API Functions
	2.1. API Interfaces
	2.1.1. hpss_Access
	2.1.2. hpss_AcctCodeToName
	2.1.3. hpss_AcctNameToCode
	2.1.4. hpss_Chacct
	2.1.5. hpss_ChacctByName
	2.1.6. hpss_Chdir
	2.1.7. hpss_Chmod
	2.1.8. hpss_Chown
	2.1.9. hpss_Chroot
	2.1.10. hpss_ClientAPIReset
	2.1.11. hpss_Close
	2.1.12. hpss_Closedir
	2.1.13. hpss_ConvertIdsToNames
	2.1.14. hpss_ConvertNamesToIds
	2.1.15. hpss_Create
	2.1.16. hpss_DeleteACL
	2.1.17. hpss_Fclear
	2.1.18. hpss_FclearOffset
	2.1.19. hpss_FileGetAttributes
	2.1.20. hpss_FileGetXAttributes
	2.1.21. hpss_FileSetAttributes
	2.1.22. hpss_FilesetCreate
	2.1.23. hpss_FilesetDelete
	2.1.24. hpss_FilesetGetAttributes
	2.1.25. hpss_FilesetListAll
	2.1.26. hpss_FilesetSetAttributes
	2.1.27. hpss_Fpreallocate
	2.1.28. hpss_Fstat
	2.1.29. hpss_Ftruncate
	2.1.30. hpss_GetAcct
	2.1.31. hpss_GetAcctName
	2.1.32. hpss_GetACL
	2.1.33. hpss_GetBFSStats
	2.1.34. hpss_GetConfiguration
	2.1.35. hpss_Getcwd
	2.1.36. hpss_GetListAttrs
	2.1.37. hpss_JunctionCreate
	2.1.38. hpss_JunctionDelete
	2.1.39. hpss_Link
	2.1.40. hpss_LoadThreadState
	2.1.41. hpss_LoadDefaultThreadState
	2.1.42. hpss_Lseek
	2.1.43. hpss_Lstat
	2.1.44. hpss_Migrate
	2.1.45. hpss_Mkdir
	2.1.46. hpss_Open
	2.1.47. hpss_OpenBitfile
	2.1.48. hpss_Opendir
	2.1.49. hpss_Purge
	2.1.50. hpss_PurgeLock
	2.1.51. hpss_PurgeLoginContext
	2.1.52. hpss_Read
	2.1.53. hpss_ReadAttrs
	2.1.54. hpss_Readdir
	2.1.55. hpss_Readlink
	2.1.56. hpss_ReadList
	2.1.57. hpss_Rename
	2.1.58. hpss_ReopenBitfile
	2.1.59. hpss_Rewinddir
	2.1.60. hpss_Rmdir
	2.1.61. hpss_SetACL
	2.1.62. hpss_SetAcct
	2.1.63. hpss_SetAcctByName
	2.1.64. hpss_SetBFSStats
	2.1.65. hpss_SetConfiguration
	2.1.66. hpss_SetCOSByHints
	2.1.67. hpss_SetFileOffset
	2.1.68. hpss_SetLoginContext
	2.1.69. hpss_SiteIdToName
	2.1.70. hpss_SiteNameToId
	2.1.71. hpss_Stage
	2.1.72. hpss_StageCallBack
	2.1.73. hpss_Stat
	2.1.74. hpss_Statfs
	2.1.75. hpss_Statvfs
	2.1.76. hpss_Symlink
	2.1.77. hpss_ThreadCleanUp
	2.1.78. hpss_Truncate
	2.1.79. hpss_Umask
	2.1.80. hpss_Unlink
	2.1.81. hpss_UpdateACL
	2.1.82. hpss_Utime
	2.1.83. hpss_Write
	2.1.84. hpss_WriteList
	2.1.85. hpss_XLoadThreadState
	2.1.86. free_ior_mem

	2.2. Non-DCE Client API Specific Interfaces
	2.2.1. hpss_PVRetrievals

	2.3. Data Definitions
	2.3.1. File Creation Hint Structure - hpss_cos_hints_t
	2.3.2. Class of Service Priorities - hpss_cos_priorities_t
	2.3.3. Class of Service Metadata Structure - hpss_cos_md_t
	2.3.4. File Attribute Structure - hpss_fileattr_t
	2.3.5. Extended File Attribute Structure - hpss_xfileattr_t
	2.3.6. Name Server Attribute Structure - ns_Attrs_t
	2.3.7. Name Server Fileset Attributes Structure – ns_FilesetAttrs_t
	2.3.8. Name Server Object Handle Structure - ns_ObjHandle_t
	2.3.9. Name Server Directory Entry - ns_DirEntry_t
	2.3.10. Bitfile Volatile and Metadata Attributes - bf_attrib_t
	2.3.11. Bitfile Volatile and Metadata Extended Attributes - bf_xattrib_t
	2.3.12. Bitfile Metadata Attributes - bf_attrib_md_t
	2.3.13. Bitfile Owner Record - bfs_owner_rec_t
	2.3.14. Bitfile Server Storage Class Attributes - bf_sc_attrib_t
	2.3.15. Bitfile Server Virtual Volume Attributes - bf_vv_attrib_t
	2.3.16. Storage Server Physical Volume Attributes - pv_list_element_t
	2.3.17. Storage Server Physical Volume Attributes Conformant Array - pv_list_t
	2.3.18. Bitfile Server Statistics - bfs_stats_t
	2.3.19. Account Record - acct_rec_t
	2.3.20. API Configuration Structure – api_config_t
	2.3.21. Name Server ACL Conformant Array - ns_ACLConfArray_t
	2.3.22. Name Server Access Control List Entry - ns_ACLEntry_t
	2.3.23. Global Fileset Entry Structure – hpss_global_fsent_t
	2.3.24. Name Server Fileset Attribute Bits – ns_FilesetAttrBits_t
	2.3.25. Name Server Object Attribute Bits – ns_FilesetAttrBits_t
	2.3.26. Purge Lock Flag - purgelock_flag_t
	2.3.27. API Name Specification – api_namespec_t
	2.3.28. Bitfile Callback Address – bfs_callback_addr_t
	2.3.29. HPSS Directory Entry – hpss_dirent_t
	2.3.30. HPSS Security User Credentials – hsec_UserCred_t
	2.3.31. Security Password Entry – SecPWent_t

	Chapter 3. I/O Descriptor (IOD) and I/O Reply (IOR)
	3.1. I/O Descriptor Purpose
	3.2. I/O Reply Purpose
	3.3. I/O Descriptor Components
	3.4. I/O Reply Components
	3.5. Data Definitions
	3.5.1. I/O Descriptor (IOD) - IOD_t
	3.5.2. Source/Sink Descriptor - srcsinkdesc_t
	3.5.3. Address Structure - address_t
	3.5.4. I/O Reply (IOR) - IOR_t
	3.5.5. Source/Sink Reply - srcsinkreply_t

	Chapter 4. Supplemental Data Transfer Functions
	4.1. API Functions
	4.1.1. IPI-3 Data Transfer Library Functions
	4.1.1.1. ipi3_data3_open
	4.1.1.2. ipi3_data3_close
	4.1.1.3. ipi3_data3_read
	4.1.1.4. ipi3_data3_write
	4.1.1.5. ipi3_data3_complete
	4.1.1.6. ipi3_data3_cancel

	4.1.2. IPI-3 Data Transfer Library Data Definitions
	4.1.2.1. IPI-3 Interface Address Structure - IPI3_INTERFACE_STRUCT

	4.1.3. Mover Socket (Parallel TCP/IP Data Transfer) Functions
	4.1.3.1. mover_socket_send_buffer
	4.1.3.2. mover_socket_send_buffer_timeout
	4.1.3.3. mover_socket_send_buffer_timeout_size
	4.1.3.4. mover_socket_get_buffer
	4.1.3.5. mover_socket_get_buffer_timeout
	4.1.3.6. mover_socket_recv_data
	4.1.3.7. mover_socket_recv_data_timeout
	4.1.3.8. mover_socket_send_requested_data
	4.1.3.9. mover_socket_send_requested_data_timeout
	4.1.3.10. mover_socket_send_requested_data_timeout_size
	4.1.3.11. mover_waitfor_data
	4.1.3.12. mover_waitfor_data_timeout
	4.1.3.13. mover_waitfor_requests
	4.1.3.14. mover_waitfor_requests_timeout

	4.1.4. Mover Protocol APIs
	4.1.4.1. mvrprot_recv_initmsg
	4.1.4.2. mvrprot_send_initmsg
	4.1.4.3. mvrprot_recv_ipaddr
	4.1.4.4. mvrprot_send_ipaddr
	4.1.4.5. mvrprot_recv_ipi3addr
	4.1.4.6. mvrprot_send_ipi3addr
	4.1.4.7. mvrprot_recv_shmaddr
	4.1.4.8. mvrprot_send_shmaddr
	4.1.4.9. mvrprot_recv_compmsg
	4.1.4.10. mvrprot_send_compmsg

	4.1.5. Mover Protocol Data Structures
	4.1.5.1. Mover Protocol Initiator Message Structure - initiator_msg_t
	4.1.5.2. Mover Protocol Completion Msg Structure - completion_msg_t
	4.1.5.3. Mover Protocol TCP/IP Address Structure - initiator_ipaddr_t
	4.1.5.4. Mover Protocol IPI-3 Address Structure - initiator_ipi3addr_t
	4.1.5.5. Mover Protocol Shm Address Structure - initiator_shmaddr_t

	4.1.6. Parallel Data Transfer Functions
	4.1.6.1. pdata_recv_hdr
	4.1.6.2. pdata_recv_hdr_timeout
	4.1.6.3. pdata_send_hdr
	4.1.6.4. pdata_send_hdr_timeout
	4.1.6.5. pdata_send_hdr_and_data
	4.1.6.6. pdata_send_hdr_and_data_timeout
	4.1.6.7. pdata_send_hdr_and_data_timeout_size

	4.1.7. Parallel Data Transfer Data Definitions
	4.1.7.1. Parallel Data Transfer Header - pdata_hdr_t

	4.1.8. Network Options Functions
	4.1.8.1. netopt_FindEntry
	4.1.8.2. netopt_GetWriteSize

	4.1.9. Network Options Data Definitions
	4.1.9.1. Network Options Entry - netopt_entry_t

	Chapter 5. Math Library
	5.1. API Interfaces
	5.1.1. add64m
	5.1.2. add64_3m
	5.1.3. and64m
	5.1.4. bld64m
	5.1.5. cast64m
	5.1.6. div64m
	5.1.7. div2x64m
	5.1.8. div_cl64m
	5.1.9. div_2xcl64m
	5.1.10. eqz64m
	5.1.11. eq64m
	5.1.12. ge64m
	5.1.13. gt64m
	5.1.14. high32m
	5.1.15. le64m
	5.1.16. low32m
	5.1.17. lt64m
	5.1.18. mod64m
	5.1.19. mod2x64m
	5.1.20. mul64m
	5.1.21. neqz64m
	5.1.22. not64m
	5.1.23. or64m
	5.1.24. shl64m
	5.1.25. shr64m
	5.1.26. sub64m
	5.1.27. sub64_3m

	5.2. Data Definitions
	5.2.1. u_signed64
	5.2.2. unsigned32

	Chapter 6. MPI-IO API Functions
	6.1. Application Programming Interfaces
	6.1.1. File Manipulation
	6.1.1.1. MPI_File_open
	6.1.1.2. MPI_File_close
	6.1.1.3. MPI_File_delete
	6.1.1.4. MPI_File_set_size
	6.1.1.5. MPI_File_preallocate
	6.1.1.6. MPI_File_get_size
	6.1.1.7. MPI_File_get_group
	6.1.1.8. MPI_File_get_amode
	6.1.1.9. MPI_File_set_info
	6.1.1.10. MPI_File_get_info
	6.1.1.11. MPI_File_set_view
	6.1.1.12. MPI_File_get_view

	6.1.2. File Access
	6.1.2.1. MPI_File_read_at
	6.1.2.2. MPI_File_read_at_all
	6.1.2.3. MPI_File_write_at
	6.1.2.4. MPI_File_write_at_all
	6.1.2.5. MPI_File_iread_at
	6.1.2.6. MPI_File_iwrite_at
	6.1.2.7. MPI_File_read
	6.1.2.8. MPI_File_read_all
	6.1.2.9. MPI_File_write
	6.1.2.10. MPI_File_write_all
	6.1.2.11. MPI_File_iread
	6.1.2.12. MPI_File_iwrite
	6.1.2.13. MPI_File_seek
	6.1.2.14. MPI_File_get_position
	6.1.2.15. MPI_File_get_byte_offset
	6.1.2.16. MPI_File_read_shared
	6.1.2.17. MPI_File_write_shared
	6.1.2.18. MPI_File_iread_shared
	6.1.2.19. MPI_File_iwrite_shared
	6.1.2.20. MPI_File_read_ordered
	6.1.2.21. MPI_File_write_ordered
	6.1.2.22. MPI_File_seek_shared
	6.1.2.23. MPI_File_get_position_shared
	6.1.2.24. MPI_File_read_at_all_begin
	6.1.2.25. MPI_File_read_at_all_end
	6.1.2.26. MPI_File_write_at_all_begin
	6.1.2.27. MPI_File_write_at_all_end
	6.1.2.28. MPI_File_read_all_begin
	6.1.2.29. MPI_File_read_all_end
	6.1.2.30. MPI_File_write_all_begin
	6.1.2.31. MPI_File_write_all_end
	6.1.2.32. MPI_File_read_ordered_begin
	6.1.2.33. MPI_File_read_ordered_end
	6.1.2.34. MPI_File_write_ordered_begin
	6.1.2.35. MPI_File_write_ordered_end

	6.1.3. File Interoperability
	6.1.3.1. MPI_File_get_type_extent
	6.1.3.2. MPI_Register_datarep

	6.1.4. File Consistency
	6.1.4.1. MPI_File_set_atomicity
	6.1.4.2. MPI_File_get_atomicity
	6.1.4.3. MPI_File_sync

	6.1.5. Error Handling
	6.1.5.1. MPI_File_create_errhandler
	6.1.5.2. MPI_File_set_errhandler
	6.1.5.3. MPI_File_get_errhandler
	6.1.5.4. MPI_File_call_errhandler

	6.1.6. File Hints
	6.1.6.1. MPI_Info_create
	6.1.6.2. MPI_Info_set
	6.1.6.3. MPI_Info_delete
	6.1.6.4. MPI_Info_get
	6.1.6.5. MPI_Info_get_valuelen
	6.1.6.6. MPI_Info_get_nkeys
	6.1.6.7. MPI_Info_get_nthkey
	6.1.6.8. MPI_Info_dup
	6.1.6.9. MPI_Info_free

	6.2. C++ Language Bindings
	6.3. Fortran Language Bindings
	6.4. Data Definitions
	6.4.1. MPI-IO Standard Data Definitions
	6.4.1.1. MPI_Offset

	6.5. Troubleshooting
	6.5.1. Compilation issues
	6.5.2. Load/Link issues
	6.5.3. Run-time errors
	6.5.4. Thread-safety issues
	6.5.5. Performance issues
	6.5.6. Caching issues

	Chapter 7. Site Interfaces
	7.1. Gatekeeping
	7.1.1. gk_site_Close
	7.1.2. gk_site_Create
	7.1.3. gk_site_CreateComplete
	7.1.4. gk_site_CreateStats
	7.1.5. gk_site_GetMonitorTypes
	7.1.6. gk_site_Init
	7.1.7. gk_site_Open
	7.1.8. gk_site_OpenStats
	7.1.9. gk_site_PassThru
	7.1.10. gk_site_ReadSitePolicy
	7.1.11. gk_site_Shutdown
	7.1.12. gk_site_Stage
	7.1.13. gk_site_StageComplete
	7.1.14. gk_site_StageStats

	7.2. Account Validation Site Interface
	7.2.1. av_site_AcctIdxToName
	7.2.2. av_site_AcctNameToIdx
	7.2.3. av_site_Initialize
	7.2.4. av_site_Shutdown
	7.2.5. av_site_ValidateAccount
	7.2.6. av_site_ValidateChacct
	7.2.7. av_site_ValidateChown
	7.2.8. av_site_ValidateCreate

	Chapter 8. Access Control List API Functions
	8.1. API Interfaces
	8.1.1. hacl_ConvertACLToHACL
	8.1.2. hacl_ConvertHACLToACL
	8.1.3. hacl_ConvertHACLToString
	8.1.4. hacl_ConvertHACLPermsToPerms
	8.1.5. hacl_ConvertHACLTypeToType
	8.1.6. hacl_ConvertPermsToHACLPerms
	8.1.7. hacl_ConvertStringsToHACL
	8.1.8. hacl_ConvertTypeToHACLType
	8.1.9. hacl_DeleteHACL
	8.1.10. hacl_GetHACL
	8.1.11. hacl_SetHACL
	8.1.12. hacl_SortHACL
	8.1.13. hacl_UpdateHACL

	8.2. Data Definitions
	8.2.1. HACL-style Access Control List - hacl_acl_t
	8.2.2. HACL-style Access Control List Entry - hacl_acl_entry_t

	Appendix A - Programming Examples
	Appendix B - Makefile Example
	Appendix C - Notes
	Appendix D - Acronyms
	Appendix E - References
	Appendix F - MPI-IO Programming Examples

